
Introduction to Linear Algebra using MATLAB 
Tutorial on Material Covered in ENG EK 127 

Relevant to Linear Algebra 
 

By 
Stormy Attaway 

 
Reference: Stormy Attaway, MATLAB: A Practical Introduction to Programming and 
Problem Solving, pp.452+x, Burlington, MA, Elsevier Inc., 2009. 
 
 
MATLAB Basics 
 Windows and Prompt 
 Variables and Assignment Statements 
 Constants 
 Operators and Precedence 
 Built-in functions, Help 
 Types 
 
Vectors and Matrices in MATLAB 
 Creating Vector and Matrix Variables 

 Row Vectors 
 Column Vectors 
 Matrices 

 Special Matrix Functions 
 Referring to Elements 
 Dimensions 
 Vectors and Matrices as Function Arguments 
 Matrix Definitions 
 Matrix Operations 

 Array Operations (term-by-term) 
 Matrix Multiplication 
 Inverse 
 Matrix Augmentation 

 Vector Operations: Dot Product and Cross Product 
 
Introduction to Linear Algebra 
 Systems of Equations 

 Matrix Form 
 2 x 2 Systems 

 Elementary Row Operations 
 Gauss Elimination 
 Gauss-Jordan Elimination 
 Reduced Row Echelon Form (RREF) 

 RREF to solve Ax=b for x 
 RREF to find inverse 

 The solve Function in the Symbolic Math Toolbox 

© Copyright  August 2010 by Stormy Attaway                                   Page 1 



 
MATLAB Basics ............................................................................................................ 3 

Windows and Prompt.................................................................................................. 3 
Variables and Assignment Statements........................................................................ 3 
Constants..................................................................................................................... 4 
Operators and Precedence........................................................................................... 4 
Built-in functions, Help .............................................................................................. 5 
Types........................................................................................................................... 5 

Vectors and Matrices in MATLAB ................................................................................ 6 
Creating Vector and Matrix Variables........................................................................ 6 

Row Vectors............................................................................................................ 6 
Column Vectors ...................................................................................................... 7 
Matrices................................................................................................................... 7 

Special Matrix Functions ............................................................................................ 7 
Referring to Elements ................................................................................................. 8 
Dimensions ................................................................................................................. 9 
Vectors and Matrices as Function Arguments .......................................................... 10 
Matrix Definitions..................................................................................................... 11 
Matrix Operations ..................................................................................................... 12 

Array Operations (term-by-term).......................................................................... 12 
Matrix Multiplication............................................................................................ 13 
Inverse................................................................................................................... 14 
Matrix Augmentation............................................................................................ 15 

Vector Operations: Dot Product and Cross Product ................................................. 15 
Intro to Linear Algebra:  Systems of Equations............................................................ 16 

Matrix Form.............................................................................................................. 16 
2 x 2 Systems ........................................................................................................ 17 
Elementary Row Operations ................................................................................. 19 
Gauss Elimination................................................................................................. 19 
Gauss-Jordan Elimination..................................................................................... 20 
Reduced Row Echelon Form (RREF)................................................................... 21 
Gauss, Gauss-Jordan, RREF Example.................................................................. 22 

The solve Function in the Symbolic Math Toolbox ................................................. 25 
 

© Copyright  August 2010 by Stormy Attaway                                   Page 2 



MATLAB Basics 

Windows and Prompt 
 
MATLAB can be used in two basic modes.  In the Command Window, you can use it 
interactively; you type a command or expression and get an immediate result.  You can 
also write programs, using scripts and functions (both of which are stored in M-files).  
This document does not describe the programming constructs in MATLAB. 
 
When you get into MATLAB, the configuration may vary depending on settings and the 
Version number.  However, you should have these basic windows: 

 the Command Window: this is the main window and is usually on the right 
 the Workspace Window: shows current variables 
 the Current Directory Window: shows files, by default in the “work” directory 

(the Current Directory is set using the pull-down menu above the Command 
Window) 

 the Command History Window: shows commands that have been entered in the 
Command Window 

 
In the Command Window, you should see 
>> 
which is the prompt.  Any command can be entered at the prompt.   

Variables and Assignment Statements 
 
In order to store values, either in an M-file or the Command Window, variables are used.  
The simplest way to put a value into a variable is to use an assignment statement.  An 
assignment statement takes the form 
 

variable = expression 
 
where the name of the variable is on the left-hand side, the expression is on the right-
hand side, and the assignment operator is the “=”.  Variables do not have to be declared 
in MATLAB. Variables that are defined can be seen in the Workspace Window.  In the 
Command Window, when an assignment statement is entered at the prompt, MATLAB 
responds by showing the value that was stored in the variable.  For example, 
 
>> mynum = 5 + 3 
mynum = 
     8 
>> 
 
Here, the user entered “mynum = 5 + 3” and MATLAB responded that it had stored in 
the variable “mynum” the result of the expression, 8. 
 
Putting a semicolon at the end of a statement will suppress the output from that statement, 
meaning that the command will be carried out, but MATLAB will not show the result.  
Here is an example of initializing a variable “count” to 0, but suppressing the output, and 
then adding one to the value of the variable (and not suppressing that output): 

© Copyright  August 2010 by Stormy Attaway                                   Page 3 



>> count = 0; 
>> count = count + 1 
count = 
     1 
 
MATLAB has a default variable, called “ans”.  Any time an expression is entered in the 
Command Window, without assigning it to a variable, MATLAB will assign the result to 
the variable “ans”. 
 
>> 7-3 
ans = 
     4 
 
There are commands that can be used to see what variables have been created in a given 
session, and to delete variables.  The commands who and whos will display the current 
variables (whos gives more information).  The clear command can be used to delete 
some or all variables. 

Constants 
 
There are built-in constants in MATLAB, including: 
 
pi  3.14159…. 

i, j  1  
inf  infinity   
NaN  stands for “not a number”; e.g. the result of 0/0 
 
(Technically, these are built-in functions that return the values shown.) 

Operators and Precedence 
 
There are many operators in MATLAB, which can be used in expressions.  Some of the 
arithmetic operators include: 
 
+ addition 
- negation, subtraction 
* multiplication 
/ division (divided by) 
\ division (divided into e.g. 3\12 is 4) 
^ exponentiation (e.g. 3^2 is 9) 
 
There is a hierarchy, or set of precedence rules, for the operators.  For example, for the 
operators shown here, the precedence is (from highest to lowest): 
 
()       parentheses 
^        exponentiation 
-        negation 
*, /, \  all multiplication and division 
+, -     addition and subtraction 

© Copyright  August 2010 by Stormy Attaway                                   Page 4 



Built-in functions, Help 
 
MATLAB has many built-in functions.  It has many mathematical functions, e.g. abs for 
absolute value, tan for tangent, etc.  The functions are grouped together logically in what 
are called “help topics”.  The help command can be used in MATLAB to find out what 
functions are built-in, and how to use them.  Just typing “help” at the prompt will show a 
list of the help topics, the beginning of which is displayed here: 
 
>> help 
 
HELP topics: 
 
matlab\general       -  General purpose commands. 
matlab\ops           -  Operators and special characters. 
matlab\lang          -  Programming language constructs. 
matlab\elmat         -  Elementary matrices and matrix manipulation. 
matlab\elfun         -  Elementary math functions. 
matlab\specfun       -  Specialized math functions. 
matlab\matfun        -  Matrix functions - numerical linear algebra. 
 
Typing help and the name of a help topic (the “matlab\” is not necessary) will show the 
functions that are contained in that particular grouping.  For example, the beginning of 
the list of operators and special characters is shown here: 
 
>> help ops 
 
  Operators and special characters. 
  
  Arithmetic operators. 
    plus       - Plus                               +     
 
Typing help and the name of a function will explain the use of the function. 
 
There are many other functions in Toolboxes with are purchased separately. 

Types 
 
There are many built-in types in MATLAB.  These are called “classes”; you can see the 
class of variables when using the whos command or in the Workspace window.   
 
By default, the type of numerical expressions and variables is double, which is a double 
precision type for float, or real, numbers.  Even when using an integer expression, the 
default type is double.  There is also the float type single.  For integers, there are many 
built-in types: int8, int16, int32, int64; the number in these types represents the number 
of bits that can be stored in a variable of that type.  There are also unsigned integer types, 
for example, uint8 is used in true color image matrices. 
 
Other types include char for single characters (e.g. ‘x’) or character strings (e.g. ‘hi’), 
and logical for the result of relational, or Boolean, expressions. 
 

© Copyright  August 2010 by Stormy Attaway                                   Page 5 



All of these type names are also names of functions that can be used to convert a variable 
or expression to that type.  For example: 
 
>> clear 
>> myvar = 5 + 4; 
>> intvar = int32(myvar); 
>> whos 
  Name         Size                   Bytes  Class 
 
  intvar       1x1                        4  int32 array 
  myvar        1x1                        8  double array 
 
Vectors and Matrices in MATLAB 
 
MATLAB is written to work with vectors and matrices; the name MATLAB is short for 
“Matrix Laboratory”.  A matrix looks like a table with rows and columns; an m by n (or 
m x n) matrix has m rows by n columns (these are the dimensions of the matrix).  Vectors 
are a special case in which one of the dimensions is 1: a row vector is a single row, or in 
other words it is 1 by n (1 row by n columns), and a column vector is m by 1 (m rows by 
1 column).  A scalar is an even simpler case; it is a 1 by 1 matrix, or in other words, a 
single value.  As seen from the whos command, the default in MATLAB is to treat single 
values as a 1 x 1 matrix. 

Creating Vector and Matrix Variables 

Row Vectors 

 
Row vector variables can be created in several ways.  The simplest method is to put the 
values that you want in the variable in square brackets, separated by either spaces or 
commas: 
 
>> rowvec = [33 11 15 7] 
rowvec = 
    33    11    15     7 
 
This creates a 1 x 4 row vector “rowvec”, or in other words, a row vector with four 
elements. 
 
The colon operator can be used to create a row vector that iterates from the starting to 
ending value with a default step of one; in this case, the square brackets are not 
necessary: 
 
>> itvec = 3:7 
itvec = 
     3     4     5     6     7 
 

© Copyright  August 2010 by Stormy Attaway                                   Page 6 



A step value can also be specified: 
 
>> stepvec = 3:2:11 
stepvec = 
     3     5     7     9    11 

Column Vectors 

 
There are two basic methods for creating a column vector: either by putting the values in 
square brackets, separated by semicolons, or by creating a row vector and then 
transposing it.  The transpose operator in MATLAB is the apostrophe.  For example: 
 
>> colvec = [33;7;11] 
colvec = 
    33 
     7 
    11 
 
>> rowvec = [3:5  44]; 
>> cvec = rowvec' 
cvec = 
     3 
     4 
     5 
    44 

Matrices 

 
Matrix variables can be created by putting the values in square brackets; the values within 
the rows are separated by either spaces or commas, and the rows are separated by 
semicolons.  One thing is very important:  there must always be the same number of 
values in every row.  The colon operator can be used to iterate within the rows. 
 
>> mat = [1:3; 5 12 0; 6:-1:4] 
mat = 
     1     2     3 
     5    12     0 
     6     5     4 
 

Special Matrix Functions 
 
There are many built-in functions in MATLAB that create special matrices.  Some of 
them are listed here: 
 
zeros(m,n) creates an m x n matrix of all zeros 
zeros(n) creates an n x n matrix of zeros 
ones(m,n) creates an m x n matrix of all ones 
ones(n) creates an n x n matrix of ones 

© Copyright  August 2010 by Stormy Attaway                                   Page 7 



eye(n) creates an n x n identity matrix (all zeros but ones on the diagonal) 
magic(n) creates an n x n magic matrix (sum of all rows, columns, and diagonal are the 
same) 
rand(n) creates an n x n matrix of random real numbers, each in the range from 0 to 1 
rand(m,n) creates an m x n matrix of random real numbers, each in the range from 0 to 1 
 
Note: some versions of MATLAB also have a function to create a matrix of random 
integers, called either randint or randi.  Use help to see whether it is available in your 
version and if so, how to use it. 

Referring to Elements 
 
Once you have created a vector or matrix variable, it is necessary to know how to refer to 
individual elements and to subsets of the vector or matrix.  In this section, we will use the 
following variables to illustrate: 
 
>> vec = 4:2:14 
vec = 
     4     6     8    10    12    14 
 
>> mat = [1:3; 5 12 0; 6:-1:4] 
mat = 
     1     2     3 
     5    12     0 
     6     5     4 
 
For a vector (row or column), referring to an individual element is done by giving the 
name of the variable and in parentheses the number of the element (which is called the 
index or the subscript).  In MATLAB, the elements of a vector are numbered from 1 to 
the length of the vector.  For a matrix, both the row and the column index must be given 
in parentheses, separated by a comma (always the row index and then the column index). 
 
>> vec(3) 
ans = 
     8 
 
>> mat(2,3) 
ans = 
     0 
 
The colon operator can be used to iterate through subscripts.  For example, this says the 
third through fifth elements of the vector (which creates another row vector): 
 
>> vec(3:5) 
ans = 
     8    10    12 
 
 
 

© Copyright  August 2010 by Stormy Attaway                                   Page 8 



Using just the colon by itself for a row or column index means all of them.  For example, 
this says all rows within the second column, or in other words, the entire second column: 
 
>> mat(:,2) 
ans = 
     2 
    12 
     5 
 
There is also a special keyword “end” which can be used to refer to the last element in a 
vector, or the last row and/or column in a matrix (for example, below, the last element in 
the first row): 
 
>> mat(1,end) 
ans = 
     3 
 
These methods of referring to elements can be used to modify elements and in some 
cases to delete them.  To delete element(s), the empty vector [] is assigned.  This example 
creates a vector, modifies a value in it, and then deletes two elements: 
 
>> newvec = [22 5 9 11 54]; 
>> newvec(4) = 49 
newvec = 
    22     5     9    49    54 
 
>> newvec(2:3) = [] 
newvec = 
    22    49    54 
 
Note: this can be done with matrices also, as long as every row in the matrix has the same 
number of values.  This means, for example, that you could not delete an individual 
element from a matrix, but you could delete an entire row or column. 

Dimensions 
 
There are several functions that are used to determine the number of elements in and the 
dimensions of variables.  Assuming a vector variable “vec” and matrix variable “mat”, 
 
numel(vec) returns the number of elements in the vector 
numel(mat) returns the total number of elements in the matrix (the product of the 
number of rows and the number of columns) 
length(vec) returns the number of elements in the vector 
length(mat) returns either the number of rows or the number of columns in the matrix, 
whichever is larger 
size(mat) returns the number of rows and the number of columns of the matrix 
size(vec) returns the number of rows and the number of columns of the vector  
 
 
 

© Copyright  August 2010 by Stormy Attaway                                   Page 9 



The size function brings up a couple of unique and important concepts in MATLAB: 
 A function can return more than one value 
 It is possible to have a vector containing more than one value on the left-hand side 

of an assignment statement.  This can be used to store the values that are returned 
from a function. 

 
For example, to store the number of rows in a matrix in a variable “r” and the number of 
columns in a variable “c”, a vector with the variables “r” and “c” is on the left-hand side 
of an assignment statement that uses the size function to return both of these values: 
 
>> mat = [7 11 33 5; 4:7] 
mat = 
     7    11    33     5 
     4     5     6     7 
 
>> [r c] = size(mat) 
r = 
     2 
 
c = 
     4 
 
In general, it is NOT good practice to assume the dimensions of a vector or matrix.  For a 
vector variable, typically either numel or length is used to determine the number of 
elements in the vector.  For a matrix, the assignment statement shown above with size is 
generally used since it is frequently useful to have the number of rows and columns 
stored in separate variables. 
 
There are also many functions in MATLAB that can change the orientation or 
dimensions of a matrix: 
 
reshape(mat,m,n) reshapes the matrix as an m x n matrix (the number of elements must 
be the same) by filling the new matrix with the values from the old one column at a time 
fliplr(mat) flips the columns from left to right 
flipud(mat) flips the rows up and down 

 

Vectors and Matrices as Function Arguments 
 
In MATLAB, an entire vector or matrix can be passed as an argument to a function, and 
the function will evaluate the function on every element, and return as a result a vector or 
matrix with the same dimensions as the input argument.  For example, 
 
>> v = 1:5; 
>> exp(v) 
ans = 
    2.7183    7.3891   20.0855   54.5982  148.4132 
 

© Copyright  August 2010 by Stormy Attaway                                   Page 10 



>> mat = [-3 4 11; 0 -2 1] 
mat = 
    -3     4    11 
     0    -2     1 
>> abs(mat) 
ans = 
     3     4    11 
     0     2     1 
 
For some functions, however, MATLAB will operate column-wise on matrix arguments.  
For example, there is a function sum that will sum the elements in a vector.  For a matrix, 
however, it will sum each individual column.  Using the variables “v” and “mat” shown 
above, 
 
>> sum(v) 
ans = 
    15 
 
>> sum(mat) 
ans = 
    -3     2    12 
 

Matrix Definitions 
 
There are many definitions that relate to matrices, and MATLAB has relevant functions 
for many of them. 
 
Two matrices are said to be equal to each other if they have the same dimensions, and all 
corresponding elements are equal.  In MATLAB, there is a function isequal that will 
receive two matrix arguments and will return logical 1 for true if they are equal, or 
logical 0 for false if not.  
 
A matrix is square if the number of rows is the same as the number of columns.  There 
are definitions that apply only to square matrices.   
 
The diagonal of a square matrix is the set of elements from the upper left corner to the 
lower right; these are the elements for which the row and column indices are the same.  
The trace of a square matrix is the sum of the elements on the diagonal.  A diagonal 
matrix is a matrix for which all of the elements that are not on the diagonal are zeros.  
There are several functions related to square matrices:  
trace(squaremat) returns the trace of a square matrix 
diag(squaremat) returns the diagonal of a square matrix as a vector 
diag(vec) creates a diagonal matrix by creating a matrix of all zeros and putting the 
vector “vec” on the diagonal 
 
An upper triangular matrix is a square matrix is a matrix that has all zeros below the 
diagonal.  A lower triangular matrix is a square matrix that has all zeros above the 
diagonal.  MATLAB has functions triu(mat) and tril(mat) that will receive a matrix 

© Copyright  August 2010 by Stormy Attaway                                   Page 11 



argument an will create an upper or lower triangular matrix, respectively, by replacing 
elements with zeros as appropriate. 
 
The diagonal of a matrix is sometimes called the main diagonal.  There can be sub-
diagonals.  For example, a tridiagonal matrix is a matrix that has a main diagonal and a 
sub-diagonal directly below the main diagonal and another directly above it. 

Matrix Operations 
 
Mathematical operations can be performed on matrices; MATLAB has built-in operators 
and/or functions for them.  Since MATLAB is written to work on matrices, loops are not 
necessary for matrix operation. 
 
For example, scalar multiplication means multiplying every element in a matrix by a 
scalar value.  In MATLAB, this is accomplished simply using the “*” operator: 
 
>> mat = reshape(1:8,2,4) 
mat = 
     1     3     5     7 
     2     4     6     8 
 
>> mat * 5 
ans = 
     5    15    25    35 
    10    20    30    40 

Array Operations (term-by-term) 
 
Matrix operations are called “array operations” if they 

 operate on two matrices 
 the two matrices have the same dimensions 
 the operations are performed term-by-term; in other words, on corresponding 

elements 
 
For array addition and subtraction, the “+” and “-” operators are used.  For example, for 
array addition: 
   
        A          +          B          =              C 

   +    =    







1098

543








642

531








161310

1074

 
>> A = [3:5; 8:10] 
A = 
     3     4     5 
     8     9    10 
>> B = reshape(1:6,2,3) 
B = 
     1     3     5 
     2     4     6 

© Copyright  August 2010 by Stormy Attaway                                   Page 12 



>> C = A + B 
C = 
     4     7    10 
    10    13    16 
 
For any operation that is based on multiplication (this means multiplication, division, and 
exponentiation), the array operator has a dot (“.”) in front of it.  For example, using the 
matrices A and B above: 
 
>> atimesb = A .* B 
atimesb = 
     3    12    25 
    16    36    60 
 
>> araisedtob = A .^ B 
araisedtob = 
           3          64        3125 
          64        6561     1000000 

Matrix Multiplication 

 
Matrix multiplication is VERY different from the array multiplication defined above.  If a 
matrix A has dimensions m x n, then in order to be able to multiply it by a matrix B, B 
must have dimensions n x something; we’ll call the column dimension p.  In other words, 
in order to multiply A *  B, the number of rows of B has to be the same as the number of 
columns of A.  We say that the “inner dimensions” must agree.  The resulting matrix, C, 
will have as its dimensions m x p (the “outer dimensions”).  So, 
 
 [A]mxn [B]nxp = [C]mxp 
 
This just explains the dimensions; it does not yet describe how the elements in the matrix 
C are derived.  Every element in C is the result of summing the products of 
corresponding elements in the rows of A and the columns of B.  Any given element in C, 
Cij, is defined as 
 

 Cij =  kj

n

k
ikba

1

 
For example, 
 
         A          *       B       =        C 









1098

543
 *     =   

















63

52

41









13756

6226

 
The first element in C, C11, is found by multiplying corresponding elements in the first 
row of A and the first column of B, and summing these, e.g. 3*1 + 4*2 + 5*3 = 26.  In 
MATLAB, matrix multiplication is accomplished using the “*” operator. 

© Copyright  August 2010 by Stormy Attaway                                   Page 13 



>> A = [3:5; 8:10] 
A = 
     3     4     5 
     8     9    10 
 
>> B = reshape(1:6,3,2) 
B = 
     1     4 
     2     5 
     3     6 
 
>> C = A * B 
C = 
    26    62 
    56   137 

 
Note that for square matrices, multiplying a matrix A by an identity matrix I with the 
same size results in the matrix A (so, multiplying a matrix by I is similar to multiplying a 
scalar by 1; it doesn’t change it). 
 
>> A = magic(3) 
A = 
     8     1     6 
     3     5     7 
     4     9     2 
 
>> A * eye(3) 
ans = 
     8     1     6 
     3     5     7 
     4     9     2 

Inverse 

 
The definition of the inverse of a matrix is that when multiplying a matrix by its inverse, 
the result is the identity matrix.  Mathematically, we would write this [A] [A-1] = [I].  
MATLAB has a built-in function to find an inverse, inv. 
 
>> A = [1 3; 2 4] 
A = 
     1     3 
     2     4 
>> inv(A) 
ans = 
   -2.0000    1.5000 
    1.0000   -0.5000 
>> A * inv(A) 
ans = 
     1     0 
     0     1 

© Copyright  August 2010 by Stormy Attaway                                   Page 14 



Matrix Augmentation 

 
Matrix augmentation means taking a matrix and augmenting by adding more columns, or 
another matrix, to it.  Note that the dimensions must be correct in order to do this.  In 
MATLAB, this is called concatenating and can be done for either a vector or matrix by 
putting the two together in square brackets.  Here is an example in which a matrix A is 
augmented with an identity matrix with the same size of A; note that can be obtained with 
eye(size(A)): 
 
>> A = [1 3; 2 4] 
A = 
     1     3 
     2     4 
 
>> [A  eye(size(A))] 
ans = 
     1     3     1     0 
     2     4     0     1 

Vector Operations: Dot Product and Cross Product 
 
As long as the dimensions are correct, some of the definitions and operations given on 
matrices above are also valid for vectors, since vectors are just a special case of matrices.  
There are some operations, however, that are only valid for vectors, including the dot 
product and cross product. 
 
For two vectors A and B that have the same length, the dot product is written A•B and is 

defined as =  A1B1 + A2B2+ A3B3 + … + AnBn  where n is the length of the 

vectors.  In MATLAB, there is a function dot to accomplish this. 

BA i

n

i
i

1

 
The cross product AxB is defined only if A and B are vectors of length 3, and can be 
written using the following matrix multiplication: 
 

 A x B =      = [A2B3-A3B2,  A3B1-A1B3,  A1B2-A2B1] 






















0

0

0

12

13

23

AA

AA

AA

















3

2

1

B

B

B

 
MATLAB has a built-in function cross for the cross product. 
 

© Copyright  August 2010 by Stormy Attaway                                   Page 15 



Intro to Linear Algebra:  Systems of Equations 
 
A system of linear algebraic equations is of the form 
 
 a11x1 +  a12x2 +  a13x3 + …. + a1nxn  =  b1 
 a21x1 +  a22x2 +  a23x3 + …. + a2nxn  =  b2 
 a31x1 +  a32x2 +  a33x3 + …. + a3nxn  =  b3 
                        
 am1x1 + am2x2 + am3x3 + …. + amnxn  =  bm 
 
where the a’s are the coefficients, the x’s are the unknowns, and the b’s are constant 
values. 
 
Using MATLAB, there are two basic methods for solving such a set of equations: 
 By putting it in a matrix form 
 Using the solve function which is part of the Symbolic Math Toolbox 
 

Matrix Form 
 
Because of the way that matrix multiplication works, the system of equations shown 
above can be written as the product of a matrix of the coefficients A and a column vector 
of the unknowns x: 
 
    A    x       =    b 

      =   























mnmmm

n

n

n

aaaa

aaaa

aaaa

aaaa











321

3333231

2232221

1131211























nx

x

x

x


3

2

1























mb

b

b

b


3

2

1

 
We have a matrix multiplication equation of the form Ax = b, and we want to solve for 
the unknowns x.  This can be accomplished as follows: 
 
 A x = b 
 
 A-1 A x = A-1 b 
 
 I x = A-1 b 
 
 x = A-1 b 
 
So, the solution can be found as a product of the inverse of A and the column vector b.   
 
 
 

© Copyright  August 2010 by Stormy Attaway                                   Page 16 



In MATLAB, there are two ways of doing this, using the built-in inv function and matrix 
multiplication, and also using the “\” operator: 
 
>> A = [3 4 1; -2 0 3; 1 2 4] 
A = 
     3     4     1 
    -2     0     3 
     1     2     4 
 
>> b = [2 1 0]' 
b = 
     2 
     1 
     0 
 
>> x = inv(A) * b 
x = 
   -1.1818 
    1.5000 
   -0.4545 
 
>> A\b 
ans = 
   -1.1818 
    1.5000 
   -0.4545 
 
 

2 x 2 Systems 

 
The simplest system is a 2 x 2 system, with just two equations and two unknowns.  For 
these systems, there is a simple definition for the inverse of a matrix, which uses the 
determinant D of the matrix.   
 
For a coefficient matrix A defined generally as 
 

A = ,  








2221

1211

aa

aa

 
the determinant D is defined as a11a22 – a12a21. 
 
 

The inverse A-1 =  











1121

12221

aa

aa

D
 

 
 
 

© Copyright  August 2010 by Stormy Attaway                                   Page 17 



For example, for the system 
 
   x1 + 3x2 = -2  
 2x1 + 4x2 =  1 
 
This would be written in matrix form as  
 

   =   







42

31









2

1

x

x








1

2

 
The determinant D = 1*4 -3*2 = -2.   
 

The inverse A-1 =  










 12

34

2

1
 =   











2/11

2/32

 

So the solution is:   =    =  








2

1

x

x











2/11

2/32








1

2








 2/5

2/11

 
MATLAB has a built-in function det to find the determinant of a matrix. 
 
>> A = [1 3; 2 4] 
A = 
     1     3 
     2     4 
 
>> b = [-2;1] 
b = 
    -2 
     1 
 
>> det(A) 
ans = 
    -2 
 
>> inv(A) 
ans = 
   -2.0000    1.5000 
    1.0000   -0.5000 
 
>> x = inv(A) * b 
x = 
    5.5000 
   -2.5000 
 

© Copyright  August 2010 by Stormy Attaway                                   Page 18 



Elementary Row Operations 

 
Although finding the inverse of a 2 x 2 matrix is straightforward, as is using it to find the 
unknowns, it is not so simple for larger systems of equations.  Therefore, we resort to 
other methods of solution.  Once the system is in matrix form, some of these methods 
involve transforming matrices using what are called Elementary Row Operations, or 
EROs.  The important thing to understand about these EROs is that using them to modify 
a matrix does not change what the solution to the set of equations will be. 
 
There are 3 EROs: 
1. Scaling:  multiplying a row by a scalar (meaning, multiplying every element in the 

row by the same scalar).  This is written sri  ri, which indicates that row i is 
modified by multiplying it by a scalar s. 

2. Interchange: interchanging the locations of two rows.  This is written as ri rj 
which indicates that rows i and j are interchanged. 

3. Replacement:  replacing all of the elements in one row with that row plus or minus a 
scalar multiplied by another row.  This is written as ri +/- srj  ri 

 
These EROs form the basis for the methods described next. 
 

Gauss Elimination 

 
The Gauss Elimination method is a method for solving a matrix equation Ax=b for x.  
The process is: 
1. Start by augmenting the matrix A with the column vector b. 
2. Perform EROs to transform this augmented matrix to upper triangular form. 
3. Use back-substitution to solve for the unknowns in x. 
 
For example, for a 2 x 2 system, the first step is to augment the matrix [A b]: 
 

  








22221

11211

baa

baa

 
Then, EROs are applied to get the augmented matrix into an upper triangular form 
(which, for a 2 x 2 matrix means finding an ERO that would change a21 to 0): 
 

  







'
2

'
22

'
1

'
12

'
11

0 ba

baa

 
Here, the primes indicate that the values may have been changed. 
 
Putting this back into the equation form, we have 
 

     =   







'
22

'
12

'
11

0 a

aa









2

1

x

x








'
2

'
1

b

b

© Copyright  August 2010 by Stormy Attaway                                   Page 19 



 
 
So, we now use the last line which says  
 
 a’22 x2 = b’2 
 
to solve first for x2: 
 
 x2 = b’2 / a’22 
 
and then go back to the first line which says  
 
 a’11 x1 + a’12 x2 = b’1 
 
to solve for x1: 
 
 x1 = (b’1 – a’12 x2) / a’11 
 

Gauss-Jordan Elimination 

 
The Gauss-Jordan Elimination method starts exactly the same way as the Gauss 
Elimination method, but instead of back-substitution to solve for x, EROs are used to get 
the augmented matrix into a diagonal form. 
 
1. Start by augmenting the matrix A with the column vector b. 
2. Perform EROs to transform this augmented matrix to upper triangular form (forward 

elimination). 
3. Use back elimination (perform more EROs) to get to a diagonal form 
4. Solve for the unknowns in x. 
 
For example, for a 3 x 3 matrix, the matrix is first augmented: 
 

















3333231

2232221

1131211

baaa

baaa

baaa

 

 
EROs are then performed using forward elimination to get it to upper triangular form: 
 

















'
3

'
33

'
2

'
23

'
22

'
1

'
13

'
12

'
11

00

0

ba

baa

baaa

 

 
At this point, the Gauss method would then use back-substitution to solve first for x3, 
then x2, then x1.  Instead, the Gauss-Jordan method continues with back elimination to get 
it to diagonal form: 
 

© Copyright  August 2010 by Stormy Attaway                                   Page 20 



















'
3

'
33

'
2

'
22

'
1

'
11

00

00

00

ba

ba

ba

 

 
Then, the unknowns can be found easily, in any order using these equations: 
 
 xi  = bi’ / aii’ 
 
 

Reduced Row Echelon Form (RREF) 

 
Reduced Row Echelon Form (RREF) takes the Gauss-Jordan elimination method one 
step further by performing scaling EROs on all rows so that the aii coefficients on the 
diagonal all become ones.   
 
RREF to solve Ax=b for x 
 
To use the RREF method to solve the matrix equation Ax = b for x, the matrix A is 
augmented with b, and then the Gauss-Jordan method is followed.  The final step is to 
scale all rows.  For example, for a 3 x 3 matrix, 
 

                      
















'
3

'
33

'
2

'
22

'
1

'
11

00

00

00

ba

ba

ba

















'
3

'
2

'
1

100

010

001

b

b

b

 
Then, the solution is simply the last column.  MATLAB has a function rref to 
accomplish this.   
 
RREF to find inverse 
 
This technique and function can also be used to find the inverse of a matrix A.  The 
procedure is: 
 Augment A with an identity matrix the same size as A  
 Follow the procedure above using EROs to reduce the left-side to an identity matrix; 

the right side will be the matrix inverse. 
 
For example, for a 3 x 3 matrix, start with [A I]: 
 

















100

010

001

333231

232221

131211

aaa

aaa

aaa

 

 
and then reduce this to:   
 

© Copyright  August 2010 by Stormy Attaway                                   Page 21 



















333231

232221

131211

100

010

001

rrr

rrr

rrr

  which is [I A-1]. 

 

Gauss, Gauss-Jordan, RREF Example 

 
Since the Gauss, Gauss-Jordan and RREF methods to solve Ax = b for x all begin the 
same way, we will demonstrate all with one example. 
 
The following 3 x 3 system of equations: 
 

3x1 + 2x2  + x3 = 1 
        x2     = 2 
 x1 + 2x2      = 3 

 
can be written in matrix form: 
 

















021

010

123

   =   

















3

2

1

x

x

x

















3

2

1

 
To solve for x, we start with the augmented matrix [A b] and perform forward 
elimination by finding EROs to get it to upper triangular form: 
 

















3021

2010

1123

  r3 – 1/3 r1  r3   

















 3/83/13/40

2010

1123

 

r3 -4/3 r2  r3     

















 03/100

2010

1123

 
Now, for the Gauss method, we use back substitution: 
 
-1/3x3 = 0  so x3 = 0 
 
x2 = 2 
 
3x1 + 2x2 + x3 = 1 
3x1 + 2 -0 = 1 
3x1 = -3 
x1 = -1 
  
Instead for Gauss-Jordan, we continue with back elimination: 

© Copyright  August 2010 by Stormy Attaway                                   Page 22 



 

















 03/100

2010

1123

 r1 + 3r3  r1    r1 -2r2  r1  

















 03/100

2010

1023





















0100

2010

3003

 
Once in diagonal form, we can solve: 
 
3x1 = -3 so x1 = -1 
x2 = 2 
-x3 = 0  so x3 = 0 
 
For RREF, scale all rows: 
 





















0100

2010

3003

  1/3 r1  r1   -r3  r3   





















0100

2010

1001















 

0100

2010

1001

 
So now the last column is x. 
 
We can also use RREF to find A-1 and solve that way. 
Start with the augmented matrix [A I]: 
 

















100021

010010

001123

  r1  r3   

















001123

010010

100021

 

r3 – 3 r1  r3    

















 301140

010010

100021

 

r3 + 4r2  r3     

















 341100

010010

100021

 

r1 -2 r2  r1     





















341100

010010

120001

 
 

So  A-1 =     and   x =     =  





















341

010

120





















341

010

120

















3

2

1

















0

2

1

© Copyright  August 2010 by Stormy Attaway                                   Page 23 



 
In MATLAB, to solve Ax=b we begin by augmenting [A b]: 
 
>> A = [3 2 1; 0 1 0; 1 2 0]; 
>> b = [1:3]'; 
>> Ab = [A b] 
Ab = 
     3     2     1     1 
     0     1     0     2 
     1     2     0     3 
 
Performing an ERO in MATLAB can be accomplished by using assignment statements to 
modify rows.  For example this ERO  
 

















3021

2010

1123

  r3 – 1/3 r1  r3   

















 3/83/13/40

2010

1123

 
is done with: 
 
>> Ab(3,:) = Ab(3,:) - 1/3 * Ab(1,:) 
Ab = 
    3.0000    2.0000    1.0000    1.0000 
         0    1.0000         0    2.0000 
         0    1.3333   -0.3333    2.6667 
 
MATLAB has a function rref to reduce: 
 
>> rref(Ab) 
ans = 
     1     0     0    -1 
     0     1     0     2 
     0     0     1     0 
 
In MATLAB, we can find the inverse of a matrix using rref and then check that using the 
inv function: 
 
>> rref([A eye(size(A))]) 
ans = 
     1     0     0     0    -2     1 
     0     1     0     0     1     0 
     0     0     1     1     4    -3 
 
>> inv(A) 
ans = 
    0.0000   -2.0000    1.0000 
         0    1.0000         0 
    1.0000    4.0000   -3.0000 
 

© Copyright  August 2010 by Stormy Attaway                                   Page 24 



© Copyright  August 2010 by Stormy Attaway                                   Page 25 

The solve Function in the Symbolic Math Toolbox 
 
If you have the Symbolic Math Toolbox, the solve equation can also be used to solve sets 
of equations.  The solution is returned as a structure.  Structures are similar to vectors in 
that they can store multiple values.  However, instead of having elements, structures have 
fields that are named.  While indexing is used to refer to elements of a vector, the dot 
operator is used to refer to the fields in a structure variable. 
 
As an example, we will solve the following 3 x 3 system of equations that was used in the 
previous section: 
 

3x1 + 2x2  + x3 = 1 
        x2     = 2 
 x1 + 2x2      = 3 

 
For simplicity, we will change the x1,x2,x3 to x,y,z, and pass the three equations as strings 
to the solve function: 
 
>> result = solve('3*x+2*y+z=1', 'y=2', 'x+2*y=3') 
result =  
    x: [1x1 sym] 
    y: [1x1 sym] 
    z: [1x1 sym] 
 
This stores the unknowns in fields called x, y, and z within the “result” variable.  The dot 
operator is used to see the actual values, which are stored as symbolic expressions.  The 
double function can convert them to numbers: 
 
>> result.x 
ans = 
  
-1 
 
>> x = double([result.x result.y result.z])' 
x = 
    -1 
     2 
     0 
 
 


	MATLAB Basics
	Windows and Prompt
	Variables and Assignment Statements
	Constants
	Operators and Precedence
	Built-in functions, Help
	Types

	Vectors and Matrices in MATLAB
	Creating Vector and Matrix Variables
	Row Vectors
	Column Vectors
	Matrices

	Special Matrix Functions
	Referring to Elements
	Dimensions
	Vectors and Matrices as Function Arguments
	Matrix Definitions
	Matrix Operations
	Array Operations (term-by-term)
	Matrix Multiplication
	Inverse
	Matrix Augmentation

	Vector Operations: Dot Product and Cross Product

	Intro to Linear Algebra:  Systems of Equations
	Matrix Form
	2 x 2 Systems
	Elementary Row Operations
	Gauss Elimination
	Gauss-Jordan Elimination
	Reduced Row Echelon Form (RREF)
	Gauss, Gauss-Jordan, RREF Example

	The solve Function in the Symbolic Math Toolbox


