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Abstract

We provide a comprehensive treatment for the problem of testing jointly for struc-
tural changes in both the regression coefficients and the variance of the errors in a
single equation system involving stationary regressors. Our framework is quite general
in that we allow for general mixing-type regressors and the assumptions on the errors
are quite mild. Their distribution can be non-normal and conditional heteroskedastic-
ity is permitted. Extensions to the case with serially correlated errors are also treated.
We provide the required tools to address the following testing problems, among others:
a) testing for given numbers of changes in regression coefficients and variance of the
errors; b) testing for some unknown number of changes within some pre-specified max-
imum; c) testing for changes in variance (regression coefficients) allowing for a given
number of changes in the regression coefficients (variance); d) a sequential procedure
to estimate the number of changes present. These testing problems are important for
practical applications as witnessed by interests in macroeconomics and finance where
documenting structural changes in the variability of shocks to simple autoregressions
or Vector Autoregressive Models has been a concern.
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1 Introduction

Both the statistics and econometrics literature contain a vast amount of work on issues
related to structural changes with unknown break dates, most of it designed for a single
change (for an extensive review, see Perron, 2006 and Casini and Perron, 2019b). The
problem of multiple structural changes has received attention mostly in the context of a single
regression. Bai and Perron (1998, 2003a) provide a comprehensive treatment: consistency
of estimates of the break dates, tests for structural changes, confidence intervals for the
break dates, methods to select the number of breaks and efficient algorithms to compute
the estimates; see also Hawkins (1976). Perron and Qu (2006) extend this analysis to the
case where arbitrary linear restrictions are imposed on the coefficients of the model. Also,
Kurozumi and Tuvaandorj (2011) propose an information criterion for the selection of the
number of changes; see also Liu, Wu and Zidek (1997). Bai, Lumsdaine and Stock (1998)
consider asymptotically valid inference for the estimate of a single break date in multivariate
time series allowing stationary or integrated regressors as well as trends with estimation
carried using a quasi maximum likelihood (QML) procedure. Also, Bai (2000) considers a
segmented stationary VAR model estimated again by QML when the break can occur in the
parameters of the conditional mean, the variance of the error term or both. Kejriwal and
Perron (2008, 2010) deal with multiple structural changes in a single equation cointegrated
model. Perron and Yamamoto (2014) derive the limit distribution of the estimates of the
break dates in models with endogenous regressors estimated via an instrumental variable
method, while they argue in Perron and Yamamoto (2015) that using standard least-squares
methods is preferable both for estimation and testing. Casini and Perron (2019a) provides
a limit distribution of the least-squares estimate of the break date in a linear model based
on a continuous-time asymptotic framework, which delivers substantial improvements with
respect to inference using the concept of highest density regions.

With respect to testing for changes in the variance of the regression error, the results
are quite sparse. Horvédth (1993) considers a change in the mean and variance (occurring
at the same time) of a sequence of i.i.d. random variables with moments corresponding to
those of a normal distribution. Davis, Huang, and Yao (1995) extend the analysis to an
autoregressive process under similar conditions. Aue et al. (2009) propose non-parametric
tests for changes in the variances or autocovariances of multivariate linear or non-linear time
series models. Deng and Perron (2008) extended the CUSUM of squares (or CUSQ) test of
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(as suggested by Incldn and Tiao, 1994, for normally distributed time series). Xu (2013)
provides a further extension with a robust estimate of the long-run variance of the squared
errors of closer relevance to our objectives. Andrews (1993) considers a one-time structural
change under a Generalized Method of Moment (GMM) setting, thereby allowing for changes
in both coefficients and variance though occurring at the same date; see McConnell and
Pérez-Quirés (2000) for a related application. Qu and Perron (2007a) consider a multivariate
system estimated by quasi maximum likelihood which provides methods to estimate models
with structural changes in both the regression coefficients and the covariance matrix of the
errors. They provide a limit distribution theory for inference about the break dates and also
consider testing for multiple structural changes, though restricted to normally distributed
errors and breaks in coefficients and variance occurring at different dates.

We build on Qu and Perron (2007a) to provide a comprehensive treatment of testing
jointly for structural changes in both the regression coefficients and the variance of the errors
in a single equation involving stationary regressors, allowing the break dates to be different
or overlap. Our framework is general and allows for general mixing-type regressors. The
assumptions on the errors are mild; their distribution can be non-normal and conditional
heteroskedasticity is permitted. Extensions to the case with serially correlated errors are
also treated. We provide the required tools to address the following testing problems, among
others: a) testing for given numbers of changes in regression coefficients and variance of the
errors; b) testing for some unknown number of changes within some pre-specified maximum;
c) testing for changes in variance (regression coefficients) allowing for a given number of
changes in the regression coefficients (variance); d) sequential procedures to estimate the
number of changes present. Note that we adopt a QML approach instead of one based on
GMM. Either could be used in principle. The main advantage of using the QML approach
based on normal errors is first that it allows a natural extension of Bai and Perron (1998)
widely used in practice. Second, and more importantly perhaps, we can use the efficient
algorithm developed in Qu and Perron (2007a). This is especially important in the current
context since even only two breaks in coefficients and variance implies four possible break
dates. Hence a computationally efficient method to estimate the break dates is needed.

These testing problems are important for practical applications; e.g., documenting struc-
tural changes in the variability of shocks in autoregressive models; see Blanchard and Simon
(2001), Herrera and Pesavento (2005), Kim and Nelson (1999), McConnell and Pérez-Quirés
(2000), Sensier and van Dijk (2004) and Stock and Watson (2002). Given the lack of proper
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1993, Bai and Perron, 1998) for changes in the mean of the absolute value of the estimated
residuals, a rather ad hoc procedure. To test for a change in variance only (imposing no
change in the regression coefficients), only can apply a CUSUM of squares test to the esti-
mated residuals, which is adequate only if no change in coefficient is present. Often, changes
in both coefficients and variance occur at possibly different dates. A common method is to
first test for changes in the regression coefficients and conditioning on the break dates found,
then test for changes in variance. This is clearly inappropriate as in the first step the tests
suffers for severe size distortions. Also, neglecting changes in regression coefficients when
testing for changes in variance induces both size distortions and a loss of power; e.g., Perron
and Yamamoto (2019a) and Pitarakis (2004). Hence, what is needed is a joint approach. To
do so, our testing procedures are based on quasi likelihood ratio tests using a likelihood func-
tion for identically and independently distributed normal errors. We then apply corrections
to have limit distributions free of nuisance parameters with non-normal distribution and
conditional heteroskedasticity. We also consider extensions that allow for serial correlation.

The empirical usefulness of our proposed procedure is perhaps best explained via appli-
cations related to changes in the variance of many macroeconomic variables (i.e., the great
moderation); see Gadea et al. (2018) and Perron and Yamamoto (2019b). The testing issues
of interest are, among others: a) testing for a change in variance in 1984 (the commonly
accepted date for the start of the great moderation); b) testing for an additional change
in variance, say following the great recession of 2007; c) estimating the total number of
changes; d) testing whether any changes are present; e) performing all these tests allowing
for changes in the parameters of a conditional regression model (e.g., a change in slope in
1973 for GDP as argued in Perron, 1989); f) performing all the corresponding tests when
testing for changes in the regression parameters allowing for changes in the variance of the
errors. For instance, an issue of interest in macroeconomics is whether the great moderation
was due to changes in the persistence parameters (the sum of the autoregressive coefficients)
as suggested by the “improved policy” hypothesis or in the error variance as suggested by
the “good luck” hypothesis or in both. Our tests allow to disentangle these effects, including
cases with multiple breaks. Section 7 provides empirical examples related to inflation and
real interest rate series. To reach the right conclusion about the number and nature of the
changes, we use all tests proposed in this paper in a careful way. Obviously, the number
of potential other applications abound. One could argue that it is sufficient to have tests
for changes in parameters that are robust to unknown patterns of changes in variance. An
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approach; first estimating the error process assuming no coefficient breaks and subsequently
testing for changes in the coefficients using this estimate. Accordingly, the tests can suffer
from severe power losses as the estimated error process can be contaminated when struc-
tural changes are actually present in the coefficients. Indeed, unreported simulations show
their tests to have non-monotonic power, i.e., power that decreases as the magnitude of the
change in the regression parameters increases. This testing problem is easily covered via our
sup LR3p and UD max LR3 1 tests, which maintain good power properties. Similarly, one
could be content with only testing for a change in variance allowing for unspecified changes
in the regression parameters. The only tests we know that tackle this issue are based on the
sup LRy and UD max LRy r tests that we propose.

The paper is structured as follows. Section 2 presents the models and testing problems,
with the quasi-likelihood tests stated in Section 3. Section 4 discusses the assumptions needed
on the regressors and errors, derives the relevant limit distributions under the various null
hypotheses and proposes corrected versions of the tests that have limit distributions free
of nuisance parameters. Section 4.1 deals with the case of martingale difference errors,
Section 4.2 extends the analysis to serially correlated errors, Section 4.3 covers the case
with an unknown number of breaks. Section 4.4 discusses tests for an additional break in
either the regression coefficients or the variance. Section 5 provides simulation results to
assess the adequacy of the suggested procedures in terms of their finite sample size and
power and provides some practical guidelines. Section 6 discusses methods to estimate the
number of breaks in the regression coefficients and the variance. Section 7 provides empirical
applications and Section 8 brief concluding remarks. An appendix contains some technical

derivations. An online supplement contains additional material.

2 Model and testing problems

We start with a description of the most general specification of the model considered where
multiple breaks occur in both the coefficients of the conditional mean and the variance of the
errors, at possibly different times. This will allow us to set up the notation used throughout
the paper. The main framework of analysis can be described by the following multiple linear

regression with m breaks (or m + 1 regimes) in the conditional mean equation:
Yt :x;ﬁ+226J+Ut, t:ch_l_'_ly--'aTjC) (1)

for y = 1,...,m + 1. In this model, ¥, is the observed dependent variable at time ¢; both

z; (p x 1) and 2 (¢ x 1) are vectors of covariates and § and 6; (j = 1,...,m + 1) are
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the corresponding vectors of coefficients; u; is the disturbance at time t. The break dates
(T%, ..., Ty,) are explicitly treated as unknown (with the convention 7§ = 0 and T)5, ., = T
used). This is a partial structural change model since the parameter vector [ is not subject
to shifts and is estimated using the entire sample. When p = 0, we obtain a pure structural
change model when all coefficients are subject to change. We also allow for n breaks (or n+1
regimes) for the variance of the errors occurring at unknown dates (77, ..., 7). Accordingly,
E(u) =0and E(u?) = o2 for TP, +1 <t < T? (i = 1,...,n + 1), where again we use
the convention that 7y = 0 and 7);, ; = T'. We allow the breaks in the variance and in the
regression coefficients to happen at different times, hence the m-vector (77, ...,7¢) and the
n-vector (T}, ..., T”) can have all distinct elements or they can overlap partly or completely.
We let K denote the total number of break dates and max[m,n] < K < m + n. When the
the breaks overlap completely, m = n = K. The multiple linear regression system (1) may
be expressed in matrix form as Y = X3+ Z6 4+ U, where Y = (y1,...,yr), X = (1, ..., 27)’,
U = (uy,..,ur), 6 = (6},...,6,,.1), and Z diagonally partitions Z at (1%¢,...,TS), i.e.,
7 = diag(Zy, ..., Zmy1) With Z; = (szcilﬂ, ---,ZT;)/- The true value of the parameters are
80 =Y, ..., (5%“)’ and (T, ..., T%9) and Z° diagonally partitions Z at (T(°, ..., T<). Hence,
the data-generating process (DGP) is Y = X3° + Z9° 4+ U with E(UU’) = Q°, where
the diagonal elements of Q0 are 0%, for T/°, +1 <t < T (i = 1,..,n + 1). We also
consider cases with serial correlation in the errors for which the off-diagonal elements of °
need not be 0. This is a special case of the class of models considered by Qu and Perron
(2007a). Their method of estimation is quasi maximum likelihood (QML) assuming serially
uncorrelated Gaussian errors. They prove consistency of the estimates of the break fractions
(A}, s A%) = (TYT, ..., TY/T), where TP (i = 1, ..., K) denotes the union of the elements of
(T, ..., TY) and (179, ...,T'°). This is done under general conditions on the regressors and
the errors; see Section 4. Importantly, from a practical perspective, they provide an efficient
estimation algorithm, which we build upon.

The testing problems are the following: TP-1: Hy : {m = n = 0} versus H; : {m =0,
n =mn.}; TP-2: Hy : {m = my,n = 0} versus Hy : {m = my, n = n,}; TP-3: Hy: {m =
0,n = ng} versus Hy : {m = m,, n = n,}; TP-4: Hy: {m = n = 0} versus H; : {m = m,,
n = n,}, where m, and n, are some positive numbers selected a priori. We shall also consider
testing problems where the alternatives specify some unknown numbers of breaks, up to some
maximum. These are: TP-5: Hy : {m =n = 0} versus H; : {m =0, 1 <n < N}; TP-6:
Hy : {m = mg,n = 0} versus Hy : {m =m,, 1 <n < N}; TP-T: Hy : {m = 0,n = n,}
versus Hy : {1 <m < M, n =n,}; TP-8: Hy: {m =n =0} versus H; : {1 <m < M,



1 < n < N}. We shall deal with: TP-9: {m = m,,n = n,} versus H; : {m = m, + 1,
n = ng}; TP-10: {m = mg,n = n,} versus H; : {m = mg,, n = n, + 1}, where m, and n,
non-negative integers. These are useful to assess the adequacy of a model with some number
of breaks assessing whether including one more is warranted. In Section 6, we also consider

sequential testing procedures that allow estimating the number of breaks in both § and o2.

3 The quasi-likelihood ratio tests

We consider the likelihood ratio (LR) tests obtained assuming normally distributed and
serially uncorrelated errors, for TP-1 to TP-4. We estimate the model using the quasi-
maximum likelihood estimation method (QMLE). Consider TP-1 with no change in 6 (m =
q = 0) and testing for n, changes in o2. Under Hy, the log-likelihood function is:

log Ly = —(T/2) (log 27 4+ 1) — (T/2) log 5°, (2)

where 52 = T2 27 (y, — 268)? and 3 = (XL, 202}) (L, #4y,). Under Hjy, for a given
partition {77, ..., T}, the log-likelihood value is given by

log Ly (1Y, ... Ty)) = —(T/2) (log 2 + 1) = Y7 (T} — T}%,) /2] log 67, (3)

where the QMLE jointly solves 3 = (37 ZtTZTZ_U_l /e (e ZZZT;’_I 1 Ty /67)
and 67 = (TY —T¢ )" ZtTiTgIH(Z/t —a)B3)%, for i = 1,...,n, + 1. Hence, the Sup-LR test is

sup LRy 1 (ng,elm =n=0) = SUP(p, a5, )ehu.e 2[log Ly (Ty, ..., Ty ) —log Ly

777777

= 2log Ly (T7, ..., Tﬁa) —log L]

where (T7, ...,Tga) are the QMLE obtained imposing the restriction of no change in the
coefficients and Ay c={(A],..., A0 ); Ay = A | > e (i=1,...,n,— 1),A] > &, A} < 1—¢},
with € a truncation imposing a minimal length for each segment. For TP-2, there are m,
breaks in ¢ under both Hyand Hi, so the test pertains to assess whether there are 0 or
ne breaks in variance. For a given partition {77,...,Ty, }, the likelihood function under
Hyis log Ly (T¢, ..., TS ) = —(T/2) (log 2w + 1) — (T/2)log &, where 5° = T 'S (y; —
2B — 28,,)%, B = (X'MzX) ' X'M;Y and é,; = (Z/2;) ' Z;(Y; — X,;f) for T¢, < t <
T¢, with Mz = I — Z(Z’Z)fl 7', 7 = diag (Zy, ..., Zmy+1), and Z; = (ZT;_1+17~--7ZT;)/»
Y, = (ych 1+1,...,yTJ«_:)’, X; = (SUTJ{:_1+1,...,.7}TJ_C>, for 7 | <t < Ty (j=1,...,mg+1). The

log-likelihood value under H is, for given partitions {17, ..., Ty, } and {77, ..., T} },

aey Na

log Ly (Tf, ... Ty s TV - T, ) = —(T/2) (log 2 + 1) = Y7 (T — T72,) /2] log 67, (4)

eey ma’?
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where the QMLE solves the following equations: 67 = [T — T ,]~ Zt Sro (W xtﬁ -
4802 (i = 1,...,ng+1) and § = (X7 Mz X°) ' X' M Y°, where My, = I-Z, (Z.2,)" Z.
with Z, = diag(Z7,..., 25, 1), ZJ = (2F¢ 4150 27¢)s and 27 = (2¢/6), for T | <t < T7
(i = 1,ung + 1), Also, 8 = (Z29'29)7129'(Y7 — X¢B) for T¢, < t < T¢, where

}/j(7 - (y%jc_l-‘,-h ) y%jcya XJU = (‘T%].C_l—i-la '-'7'Tg“].c)/ with ZE? = (‘Tt/a-z) and yz? = (yt/a-z) Hence,

sup LRy 1 (Mg, Na,|ln = 0,m,)

= 2| sup log[A/T(Tf,...,T;;a;Tf,...,T,fl’a) - sup long(Tf,...,TﬁLa)]
(AG 1A G AT oA, ) EA (XS 1Ay JEAC,e
= 2[1ogLT(T1,...,T;a;ff,...,fga)—1ong(Tf,...,:f;a)],
where Ace = {(A], .., An) 5 [ A5 — X[ 2 e (G =1,...ma —1),A] > e, X, <1—¢} and
Ac = {(A], s A AL, s An) s for (A, ey Ar) = (A, o, Ay U (XY, oy AY) (5)

|)‘j+1_)‘j| 28(jzl,...,K—]_),)\lZE,)\Kgl—E}.

Note that we denote the estimates of the break dates in coefficients and variance by a “~”

when these are obtained jointly, and by a “*”

when obtained separately.

The set A. which defines the possible values of the break fractions in § (A, ..., A7) and
in o2 (\],...,\)) allows them to have some (or all) common elements or be completely
different. What is important is that each break fraction be separated by some ¢ > 0. This
does complicate inference since many cases need to be considered. To illustrate, consider
me = N, = 1. We can have K = 1, a one break model with both § and % changing at the
same date. On the other hand, if K = 2, the break date for the change in ¢ is different from
that for the change in 0. This leads to two additional possible cases: a) A < A} — ¢ (the
break in § is before that in 02), b) A\{ > A} + & (the break in § is after that in 02). The
maximized likelihood function for these two cases can be evaluated using the algorithm of
Qu and Perron (2007a) since it permits imposing restrictions. For example, if \{ < A} — &,
we have a two break model and the restrictions are that the error variances in the first
and second regimes are identical, and the coefficients are the same in the second and third
regimes. Hence, for the case m, = n, = 1, there are three maximized likelihood values to
construct and the test corresponds to the maximal value over these three cases. When m,
or n, are greater than one, more cases need to be considered, but the principle is the same.

For TP-3, H, specifies n, breaks in ¢ and none in §. For a partition {T7,...,T°}, the
likelihood function is log L (T TP ) = —=(T/2) (log 2w + 1) — St (T - T, /2] log &7,
where 72 = (TP — T )~ Zt:nglﬂ(yt — @B — 282 fori =1,..,n, + 1, with (E,,g,)’ =
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(WoWLWe'ye, We = (wg,...,wd) and w’ = (7, 27")'. Under H;, there are m, breaks
in § and n, breaks in o2 and the likelihood function is (4). The sup-LR test is

sup LR3 1 (Mg, N, €lm = 0,n,)

= 2 sup log Lp(T¢, ..., TS, ; TP, ., T2) —  sup  log Lp(TY, ..., T%)]

(XS e AGg AT oA, ) EA (XY, X8, ) EAw Na

= 2[log Lp(T¢, .., TS TP, ..., T2.) — log Lp(T?, ..., % )]

Na

For TP-4, under Hy we have no break and the log-likelihood function is (2). H; specifies m,
breaks in ¢ and n, breaks in ¢% and the log likelihood is (4). Hence, the Sup-LR test is

sup LRy (Mg, N, eln = m = 0)

log Ly (T¢, .., TS, TP, .., TY.) — log L

= 2[sup(/\§7 A

mq?

= 2[og Lp(T¢, ..., TC, ; TP, ..., TY.) — log L] (6)

n

A AG, ) EA

4 The limiting distributions of the tests

The limit distribution of the tests for martingale difference errors is presented in Section 4.1
with extensions to serially correlated errors in 4.2. Section 4.3 deals with double maximum
tests and 4.4 with tests for an additional break; “—,” denotes convergence in probability,

“=" weak convergence under the Skorohod topology and || - || is the Euclidean norm.

4.1 The case with martingale difference errors

When o2 is constant under Hy but allowed to change under H; (TP-1,2,4), we specify:
e Assumption Al: The errors {u;} form an array of martingale differences relative to F; = o-
Field ..., 21, 2, ooy Loty Ty ooy U2, Up_1 }, B(u) = 02 for allt and T2 3T (02 /62 1) =
YW (s), where W (s) is a Wiener process and 9 = limp ., var(T-Y2 321 (u2/0 — 1)).
Assumption A1 rules out instability in the error process and states that a basic functional
central limit theorem holds for the partial sums of the squared errors. When changes in the
coefficients are tested (TP-3 and TP-4), we assume, with w, = (z}, z})":
e Assumption A2: The errors {u,;} form an array of martingale differences relative to F; = o-
field {...;ze-1, 2ty ooy Ty1, Tty ooy Uy U1}, T thTi] wyw; —, sQ, uniformly in s € [0,1],
with Q some positive definite matrix and T2 317 24, = O'OQl/ W, (s), where W, (s) is
a g-vector of independent Wiener processes independent of W (s).
The first part of Assumption A2 rules out trending regressors and requires the limit

moment matrix of the regressors be homogeneous throughout the sample. Hence, we avoid
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changes in the marginal distribution of the regressors when the coefficients do not change
(e.g., Hansen, 2000, Cavaliere and Georgiev, 2018). This follows from our basic premise that
regimes are defined by changes in some coefficients. The second part of A2 assumes no serial
correlation in the errors u; but this will be relaxed later. Since some testing problems imply a
non-zero number of breaks under Hy, i.e. in TP-2 and TP-3, we need the following conditions
to ensure that the estimates of the break fractions are consistent at a fast enough rate so
that they do not affect the distributions of the parameters asymptotically. This problem was
analyzed in Qu and Perron (2007a) and we simply use the same set of assumptions:

e Assumption A3: The conditions stated in Assumptions A1-A9 of Qu and Perron (2007a)
are assumed to hold with the segments defined for T? (i = 1, ..., K'). However, A6 is replaced
by (for j = 1,...,m and i = 1,...,n): ‘5?+1 (5]0- = 0§67 and 04410 — 030 = vro},, where
(67,070) # 0 and are independent of T'. Moreover, v%. is either a positive number independent
of T or a sequence of positive numbers satisfying v3 — 0 and T"/%v%./ (log T)2 — 00, while
vr is a sequence of positive numbers satisfying vy — 0 and T"2vy/ (log T)? — oo.

The main difference is that we require the changes in the variance of the errors to decrease
to 0 at a slow enough rate as T increases, while the changes in the coefficients can be fixed
or decreasing. Both cases ensure that the estimates of the break fractions are consistent and
that the limit distribution of the parameter estimates are the same as when the true break
dates are known. The requirement that the change in variance must decrease as 1" increases
is to ensure that A2 holds when changes in variance are permitted under the null hypothesis,
in particular if lagged dependent variables are present. Otherwise the limit distribution of
the test for TP-3 is not invariant to nuisance parameters. This is not constraining in practice
since the rate of decrease can be as slow as desired. We will show via simulations that the
exact size of the test is close to the nominal level whether the changes in variance are small

or large. To see why this is needed to ensure that A2 is satisfied, let zuf = zu; /0. Then,

gi0 —

pO
20y (12 E zuy) = 00@Q2W, (s),

-1/2 [Ts] o 1/2 [T's] na+1
T t=1 ~tUt g0 Zt 1 Ztut Z ( t=T70 +1

g0

where o¢ = 01 without loss of generality. The result follows since [(oi0 — 00)/0i0] = Op(v7),
v0

vr — 0 and T—Y/2 ZT o0 g AU = O,(1). The same applies to the requirement that

ETSI] wyw; —, sQ uniformly in s. To see that this holds when lagged dependent variables

are present, consider a simple AR(1) model y; = By; 1 + u; in which ¢ has n breaks and

|B| < 1. Using the variance adjusted series y{ = Sy7 ; + uy where uy = u;/0;9, we have:

T o = 2 =12 e 10, (ur) B sQ, (7)



where Q = 02/(1 — 3*) (see Supplement A). Why v, can remain fixed when § changes is
because such breaks do not affect the moments of the errors, and when lagged dependent
variables are present changes in ¢ imply changes in the marginal distribution of the regressors
(e.g., the lagged dependent variables) occurring at the same times, which is allowed. The

limiting distributions of the LR tests under Hy, are stated in the following Theorem.

Theorem 1 Under the relevant null Hy, we have, as T — oo: a) For TP-1, under Al:

¥ (N (A) = MW )
sup LRy 7 (ng,elm =n =0) = sup(,» o = — -
1,T ( | ) ()\1 ..... Ana)eAv,s ; )\i+1)\i ()\i+1 - )\Z)
b) For TP-2, under A1 and A3,
"o AV (AY,) — A v))?
sup LRy 7 (Mg, ng, eln = 0,m,) = sup ¥ (W g)\iJri) vAZHW;(AZ )
(AV,Ab, ) EAS 2 i—1 Aip1 ()‘i+1 - >‘i)
Na v v v v 2
< sup ﬂ (Ai W ()‘i+1) — AW (S ))
(Ao AB, JEAG 2 i1 /\;}H)\f ()\fﬂ - )\f)

where AS . = {(A], ..., \0) 5 for (A1, ... k) = (AP, A U (A, AD), N = Al > e (5 =
1, . K—=1),\ >¢e, Ak <1—¢}. ¢) For TP-3, under A2 and AS3:

Za [N, (NS, ;) — A WL (X9)]?

sup LR3 1 (M, na, €lm = 0,m,) = sup 1A q<c JHC) s cq( il
(M Xg JEAL L =1 Ajr1Aj(Ajn = A7)

o [NWa(N] 1) = X W (A2

< ey I

(Af ..... XS )GAC,E j=1 j+1>\§()\§+1 - )‘5)

where A2, = {(A], ..., A0); for (A1, ., Ak) = (AL, ., An) U (A%, A00), [N — Al > e
(j=1,.,. K—=1),\ > e, \x <1—¢}. d) For TP-4, under Al and A2:

s [INSWa (XS 4 1) =251 1 Wa(X5)I1?

o j=1 X6 A (Mg —A9)
sup LRy 1 (Mg, Na,eln =m =0) = sup . (Afgix\jyﬂjj\hljw(/\?)ﬁ

Y
(X1 XS AT XY, ) €A +5Zi:1 3ot (VT AT

sme IS Wa (A5 11) = A5 Wa(AS)]?
j=1 —
< Sllp ’ j§+1>€<>\§+1v>\§) vY)2
- (/\C AC AT Y )EA +£ Zna ()‘iW()‘i+1)_>‘i+1W(>‘i))
7777 ma? Mg Ccv,€ = v v v v
! ! 2 =1 Afp1A ()‘i+1*>‘i)

where A = {(A], s Aii AL, s AU ) 5 [ A5 = A 2 e (G =1,.,ma—1),A] > &, A0, < 1—,

N = A >e(i=1,.,n,—1),A\ > e X, <1—¢}.
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Except for TP-1, the limit distributions depend on the interval between the break frac-
tions for 6 and o2 when they do not coincide. This imposes restrictions on the parameter
space of the break fractions. Hence, the critical values are smaller than what is obtained
from the standard limit distribution in Bai and Perron (1998). Although the computation of
such limit distributions might be feasible, it is beyond the scope of this study. The results,
however, show that these distributions are bounded by limit random variables which can
easily be simulated. This follows since Af)’6 CAye, AZ,E C A.c and A, C A, .. Hence, a con-
servative testing procedure is possible. As we shall see, the test is barely conservative if the
trimming parameter ¢ is small, though as ¢ gets large (e.g. 0.20) the test will be somewhat
undersized. The proof of this Theorem is given in the Appendix. For TP-3, the bound is the
same as the limit distribution in Bai and Perron (1998, 2003b) and the critical values they
provided can be used. For TP-1 and TP-2, the same limit distribution (for a one parameter
change) applies except for the scaling factor (¢//2). This quantity can nevertheless still be

consistently estimated. Consider the class of estimates:

QL =T Z?:_—l(T—l) w (J, bT) Zfz\j\—l—l ﬁtﬁt—j (8)
where 7, = (42/6%) — 1 and 6% = T~' Y|, 42 with @, the estimated residuals. Here w (4, br)
is a weight function and by some selected bandwidth. The estimate 1& will be consistent
under some conditions on the choice of w (j, br) and the rate of increase of by as a function
of T. Following Kejriwal (2009), see also Kejriwal and Perron (2010), we use the residuals
under Hj to construct the sample autocovariances of 7, but the residuals under H; to select
the bandwidth parameter br; see Supplement B for details. In our simulations and empirical
applications, we use the Quadratic Spectral kernel and to select by we use the method of
Andrews (1991) with an AR(1) approximation. If the errors are i.i.d., ¢ = p,/o* — 1,
which can be consistently estimated using ¢ = ji,/6* — 1, where 6> = T-'3._ 42 and
i, =T Zthl i} with 4, the residuals under the null or alternative hypotheses. Also, if the
errors are normal as in Qu and Perron (2007a), 1 = 2 so that no adjustment is necessary.
We shall only consider a correction involving {p as defined by (8) for all cases; Supplement
C shows that there is no loss in power in doing so and that the size remains adequate. The

following corrected statistics then have nuisance parameter free limit distributions:

. ()‘fW ( ;)+1) B )‘f+1W 0‘3)) (9)

sup LR} = (2/711) sup LRy r = sup

(A A, ) ERw e =1 Aiv1Ai (Afﬂ - )‘;})
R Ta (NI (AY L) — AV A?))2
sup LRy = (2/v)sup LRy 1 = sup ( ZWE Hi) - z+1V[/1)( 7’))
(Ao Xb, JEAS . =1 Aiy1Ai ()‘iﬂ - )‘i)
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C S NWNL) =W O0)°
B (A A, ) ERw e i=1 )‘;}+1>‘g ()‘g+1 - )‘f)

For TP-4, it is possible to obtain a transformation with a limit distribution free of nuisance

parameters but the procedure is more involved. It is given by
sup LR} = sup LRy — [({ﬂ — 2)/¢]LRU, (10)

where LR, is the LR test for 0 versus n, breaks in variance evaluated at {f{’ s s Tvr”ja} obtained

by maximizing the likelihood function jointly allowing for m, breaks in ¢, i.e.,
LRU - Z[Ing/T(Tlva’fsa) _lOgETL (11)

where log Ly (-) and log Ly are defined by (3) and (2), respectively. Note that LR, is not
equivalent to LRy 1 (ng,e|m =n = 0) which is based on the estimates of the break dates
for the changes in variance assuming no break in coefficients. Since {f VT, ..., T v T} are

consistent estimates of the break fractions whether m, = 0 or not, we have:

o AW (M) = AW (A)?

LR, = (v/2) sup

v v v v
(MY, An, )EAL =1 A ()‘i-i-l - )‘i)
and, hence,
S [INGWa (M54 1) =251 Wa(A5)II
j=1 XS AS(Ae, —A¢
sup LR, = sup 5112 (X5 1—A)

YW (A ) AL WD)
A A (A=A

E:ma |‘)‘§W‘1(>‘§+1)7>‘§+1Wq(>\§)||2
o) e | (12)
(XS A Ao AS ) €A o e _|_§:?a1(i (W) A WD)
1N mg 1 \ng cv, —

A
(MG 1 XS AT AL, ) €A +Z?:“1(

i+1)
NN (A —A7)

The limit distribution (12) is new and we obtain the asymptotic critical values via sim-

ulations. The Wiener processes W,(\) and W (A) are approximated by the partial sums
T2 e, and T2 ¢, with e, ~ 4.4.d.N(0,1,) and & ~ i.i.d.N(0,1) which are
mutually independent. The number of replications is 10,000 and 7" = 1,000. For each repli-
cation, a sum of the supremum of 37" (||[AjW, (A1) =5, We (A1) /X511 A5 (A1 —AF) with
respect to (Af, ..., A%, ) and that of 12, (AW (AL, 1) = AL W (A)))2) /ALY (A — AY) with
respect to (A7,..., A, ) is obtained via a dynamic programming algorithm. The critical val-
ues for tests of size 1%, 2.5%, 5% and 10% are presented in Table 1 for ¢ between 1 and
5and e = 0.1, 0.15, 0.20 and 0.25. For ¢ = 0.1, 0.15,0.2, m, = 1,2 and n, = 1,2. For

e =0.25,m, =1, and n, = 1 given that ¢ = 0.25 imposes a maximal number of 2 breaks.

12



4.2 Extensions to serially correlated errors

We now consider the case with serially correlated errors. For TP-1 and TP-2, the results
are the same and the sup LR and sup LRj; statistics are asymptotically invariant to
non-normal errors, serial correlation and conditional heteroskedasticity so that the limit
distribution (9) still applies. For TP-3 and TP-4, things are more complex. For TP-3, the
LR type test for changes in 6 depends on nuisance parameters. We suggest the following

robust Wald type statistic: SUD (x¢,.xc,. )eA. Ws.r (Mg, ng, €lm = 0,n,), where
Wit (Ma, e, €lm = 0,n4) = T8 R/(RV (§)R') "' Ré (13)

with § = (5,1, ...,(AS;%H)’ the QMLE of § under a given partition of the sample, R is the
conventional matrix such that (R8)' = (8; — &,...,6,, — &, ,,) and V() is an estimate of
the covariance matrix of § robust to serial correlation and heteroskedasticity, i.e., a consis-
tent estimate of V(8) = plimg . T (Z;’Z;)fl Qz: (Z;’Z;)fl, where Z} = Mx,Z,, Qz. =
E(ZXUUFZY), Uf = Mx, U,, Mx, = Ir—X(X! X,) 1 X!, with Z, = diag (Zf, ey Zgaﬂ) ,
Z7 = (z%jc_lﬂ, ...,z%jc)’, Uy = (ug,..;us) , 20 = (2:/6;) and uf = (us/6;), for TP, <t < T°
(t=1,...,n, + 1). In practice, the computation of this test can be very involved. Following
Bai and Perron (1998), we suggest first to use the dynamic programming algorithm to get
the break points corresponding to the global maximizers of the likelihood function defined
by (4), then plug the estimates into (13) to construct the test. This will not affect the
consistency of the test since the break fractions are consistently estimated.

For TP-4, potential serial correlations in both u,; and 1, must be accounted for. This can
easily be achieved since sup LRy 7 is asymptotically equivalent to sup LR} = sup LRz +
LR,. Because of the block diagonality of the information matrix, corrections can be applied
to each component separately. The first term is constructed as discussed above, namely
W5 r defined by (13), except that one can use z; instead of z; since Hy specifies no break in
variance. The second term LR, is as defined by (11) with ¢ constructed by (8).

4.3 Double maximum tests

The tests discussed above need prior information about Hi, i.e., the number of breaks in
6 and in o2, which may be unknown. Hence the need for TP-5 to TP-8. Bai and Perron
(1998) proposed double maximum tests to solve this problem with only breaks in 6. They are
tests of no break against an unknown number of breaks given some upper bound. We shall

only consider their UD max test. The double maximum tests can play a significant role in
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testing for structural changes and it is arguably the most useful tests to apply when trying to
determine if structural changes are present. While tests for one break are consistent against
multiple changes, their power in finite samples can sometimes be poor. There are types of
multiple structural changes that are difficult to detect with a test for a single change (e.g.,
two breaks with the first and third regimes the same). Also, tests for a particular number
of changes may have non monotonic power when the number of changes is greater than
specified. Furthermore, the simulations of Bai and Perron (2006) show, in the context of
testing for changes in the regression coefficients, that the power of the double maximum
tests is almost as high as the best power achievable using the test specified with the correct
number of breaks. All these elements strongly point to their usefulness. For each testing

problem, the tests and their limit distributions are presented in the following Theorem.

Theorem 2 Under the relevant Hy, we have, as T — oo, a) For TP-5, under Al:

UDmax LR,y = 1maXNn Ysup LR} 1 (na,elm =n = 0)
(AW (AY) = AL (D)
= max 7, -1 sup Z( 7 2(} z+i) . i+1 v( z))
S GV 15 W A A (M =)

b) For TP-6, under A1 and A3:

UDmax LRyp = maXNn Ysup LR} 1 (Mg, Mg, €ln = 0,my,)
1<ng< ’

o AW () = AL (A7)

= max n, sup S -
1sna<N (A{,..,,AZQ)EA&E i=1 )‘z+l)\ ()\erl - >‘1)
(AW (A) — A A
<  max n, sup ( ¢ ( Hll)) - iV ( ))
1sna<N (x;,...,xza)e/\v,s P A (M — X))
¢) For TP-7, under A2 and A3:
UDmax LRyr = 1<HlaXMm Ysup LR3 .1 (Mg, na, €lm = 0,n,)
Ma )\c c )\c W )\c 2
I Sl AL PG
1sma<M (Ai,...,AfnG)eAgs st AT Aj(Af = Aj)

P )11/ 8V Bt UL

1sma<M (AS XSy )€ G=1 1125 (Af 1 — A9)
d) For TP-8, under A1 and A2:
UDmax LRyr = max max (n,+m,) ' sup LR} 1 (Mma,nq,€ln =m =0)

1<ne <N 1<mq<M
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e XS Wy (A1) = X5 Wa (XS)] 2
=t 25415 (A5 4125)
YW (A24) =AW D)2
AN (A=)
§ma AW (XS41) =284 Wa(A9)12

_ Jj=1 XS, AS(AS,  —AC
<  max max (ng+mg) " sup Y ”1UJ( e ;) s
1<ne <N 1<mq <M e e b e na WWW(NLL) AL W)
=Na= iV E5Mae> (XS A A s AS, ) EA o e +5 i s —
AN (Ai+1*)‘i )

= max max (ng,+mg) " sup
1<n <N 1<ma <M n
SNaSV 1SMeS (Af e XGu A AS, JEA: | 420

For TP-5 to TP-7, the critical values of the limit distributions are available in Bai and
Perron (1998, 2003b) for N or M equal to 5. For TP-5 and TP-6, the results are valid
for martingale differences or serially correlated errors. This is not the case for TP-7 and
TP-8 for reasons discussed above. We then consider the maximum of the Wald-type tests
discussed Section 4.2. The limit distribution applicable to TP-8 is new. Table 1 presents
critical values obtained using simulations as discussed above for the case of a fixed number
of breaks under Hy, for € = 0.1, 0.15, and 0.20, and values of M and N up to 2; see Perron
and Yamamoto (2019b) for additional critical values with M, N = 2,3, 4.

4.4 Testing for an additional break

We now consider TP-9 and TP-10, which assess whether including an additional break is
warranted. Let (T¢, ..., T¢; T?, ..., T?) be the estimates of the break dates in § and o2 obtained
jointly by maximizing the quasi-likelihood function assuming m breaks in 6 and n breaks in

o%. For TP-9, the issue is whether an additional break in § is present. The test is

7 e c TiC TC . W T

sup Segor (m+ 1,n|m,n) = 1<I]Il<%7}1(+1 sup log Lo(Ty, ..., T5 4, 7,15, ..., T TV, ..., T7))
>)> TEAS
J,€

—log Ly (T¢, .. To; T}, .., TY)

where AS_ = {T; fjc_l + (ff — fjc_l)s <7< fjc — (fj - ch_l)s}. This amounts to performing
m + 1 tests for a single break in ¢ for each of the m + 1 regimes defined by the partition
{ff, s ﬁ';"l} Note that there are different scenarios when allowing breaks in § and in o2 to
happen at different dates, since (ff, s ﬁ‘;) and (ff, s iﬁ’ ) can partly or completely overlap
or be altogether different. This implies two possible cases: 1) if the n break dates in o2
are a subset of the m break dates in ¢, there is no variance break between YN’]‘Ll and YN“].C; 2)
otherwise, there is one or more variance breaks between 77 ; and T7. In either cases, one can
appeal to the results of Theorem 1(c) with m, = 1 since any value of n,, is allowed, including
0. It is then easy to deduce that, in the case of martingale errors, the limit distribution

of the test is, under Assumptions A2 and A3, limy_,« P (sup Seqor (m + 1,n|m,n) < zx) =
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Gye (x)™*!, where G,. (z) is the cumulative distribution function of the random variable
SUPren, . || (Wq (A) — AW, (1) []/(A (1 = \)), where A;. = {\;e < A < 1 —¢}. The critical
values of the distribution function G, (z)™*" can be found in Bai and Perron (1998, 2003b).
With serial correlation in the errors, the principle is the same except that the statistic is
based on the robust Wald test sup Fj r as defined by (13) applied for a one break test to each
segment. For TP-10, similar considerations apply. Here the issue is whether an additional
break in the variance is present. The test statistic is

sup Sequor (m,n+ 1jm,n) = (2/1)) max sup log[A/T(ff,...,Tvc;ff,...,fp_l,r,f?’,‘..,f“)
’ 1<i<n+1 repy_ m i i i

—log Ly (T¢, .., TS TY, ..., T")

where A} = {7; TP+ (TP =T e <7 < TP — (TP — T ,)e}. The correction factor (2/1)
is needed to ensure that the limit distribution of the test is free of nuisance parameters when
the errors are allowed to be non-normal, serially correlated and conditionally heteroskedastic.
One can then use part (b) of Theorem 1 to deduce that, under A1 and A3 applied to each

segments under Ho: limy_ o P (sup Seqyor (m,n + 1|m,n) < z) = Gy (z)".

4.5 Local asymptotic power

Supplement D contains details about the local asymptotic power function of selected tests.
We briefly summarize the relevant results. We consider model (1) focusing on the case of
n = m = 1 with the following assumptions.

eAssumption L1: Assumptions Al and A3 hold with o9 — 019 = o*/ VT. We also
have T1/2 Fj[(uff — 1] = YW(s) with ¢ = limg_, var(T~/? Z:{:l[(uff —1]) and
T-1 Z,[isl] (u?)? 2 s uniformly in s.

eAssumption L2: Assumptions A2 and A3 hold with 63 — 69 = §*/V/T.

We derive the local asymptotic power of the tests sup LRy r(n =1,m = 1,ejn = 0,m = 1)
and sup LR3 p(m = 1,n = 1,elm = 0,n = 1) and the corresponding tests with no nuisance
breaks accounted for, i.e., sup LR; r and the standard sup LRy test. Lemma S.1 shows that
the local asymptotic power of the sup LRy test coincides with that of sup LR; r except
that the set of permissible break dates Aj . is smaller than A, ., which has no practical
effect. Lemma S.2 shows that the local asymptotic power of the sup LR3r is the same

as that of sup LRy derived in Andrews (1993, Theorem 4), again except that the set of

v
c,€

(resp., coefficients) allowing for changes in coefficients (resp., variance), we have the same

permissible break dates is A7, instead of A... Hence, when testing for changes in variance
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local asymptotic poser function as when testing for changes in variance (resp., coefficients)
when no change in coefficient (resp., variance) is present. Hence, there is no loss in local
asymptotic power adopting our more general approach.

We also derived the local asymptotic power function of the CUSQ test (see (14) below
for its definition) and compared it to that of the sup LR, 7 and sup LR, r tests. Figure S.1
shows the asymptotic local power functions of the sup LR; r and CUS(Q tests when a break
in variance occurs at \** = 0.3, 0.5 and 0.7 and no break occurs in the coefficients. They
show the local asymptotic power functions to be almost identical. Figure S.2 presents the
local asymptotic power functions of the sup LRy test when it accounts for a coefficient
break at A = 0.3, 0.5 or 0.7. It also shows, the local asymptotic power functions of the
CUS(@ test under the assumption of no break in the coefficients. This simulation design
gives an advantage to the CUS(Q. Indeed, the power of the sup LR, test is slightly lower
when the variance and the coefficient break dates coincide. This is because the permissible
break dates around the true break date are not considered due to the concurrent nuisance
break. However, the power loss of the sup LR, r test is very minor. The power of both tests
are almost identical even though the sup LR, r test considers a single nuisance break when
the two breaks are far apart. i.e., the case of (A", A\**) = (0.3,0.7) and (0.7,0.3).

5 Monte Carlo experiments

We provide simulation results to assess the size and power properties of some tests proposed;
Section 5.1 for variance breaks, 5.2 for conditional tests, 5.3 for the sup LR} r and UD max
tests. Supplement E provides additional results for the sup LR; r and sup LRy 1 tests with
non-normal errors. Following Bai and Ng (2005), we use: (a) the ¢ distribution with 5 degrees
of freedom, (b) a mixture of two normal distributions: v11(z < 0.5) + veI(z > 0.5), where
z ~U[0,1],v; ~ N(—1,1) and v5 ~ N(1,1) (c) the x* distribution with 5 degrees of freedom
and (d) an exponential distribution —In(v), v ~ U[0,1]. The results show that the exact
size of the tests is similarly close to the nominal size. As expected, power is lower for all
distributions, though the extent of the power loss is minor and the tests remain informative.

Our tests for changes in variance retain their power advantage over the CUSQ test.

5.1 Testing for variance breaks only

We now consider the case of testing only for variance breaks assuming no change in 6. We

investigate the properties of the following tests: the sup LR 7 (nq, €|m = n = 0), abbreviated
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sup LR} 1 (n4,¢€) and the UD max LR, 7 for an unknown number of breaks up to N = 5. We
also consider a corrected version of the CUSUM of squares test of Brown, Durbin and Evans
(1975), as extended by Deng and Perron (2008), given by

CUSQ = supycoq [T~ 02 — ([T /T) S, 33l /oy (14)

with ¢, =T! Zg__()T_l) w (4, br) ZtT:|j|+1 feile_;, where i, =02 — 6, 6% =T~ ST, 92 and
Uy denotes the recursive residuals. Also w (j,br) is the Quadratic Spectral kernel and the
bandwidth br is selected using Andrews’ (1991) method with an AR(1) approximation. The
aim of the design is to address the following issues: a) the size of the sup LR} 1 (n,, €) and
UD max LR, 1 tests; b) the relative power of the three tests; c) the power losses obtained
when under-specifying the number of breaks; d) the relative power of the UD max LR,
compared to sup LR (ngq, €) with n, specified to be the true number of breaks. We consider
a dynamic model with GARCH errors, for which the DGP is given by y, = ¢+ ay;_1 + €,
er = ugphg, ug ~ id.d. N(0,1), hy = 71 + 721 (t > [.5T]) + ve?_, + phs_1, where we set
ho =11/ (1—~—=p), c =057 = 0.1, and € = 0.15. We consider a« = 0.2, 0.7 and the
GARCH(1,1) coefficients are set to v = 0.1, 0.3, 0.5 and p = 0.2. The size and power of 5%
nominal size tests are evaluated at 7" = 100, 200. The magnitude of the change 75 varies
between 0 (size) and 0.3. The results are presented in Table 2. The sup LR] - (1,¢) and
UD max LR, r tests show size distortions when v = 0.5 with 7" = 100 but the size is close
to 5% when T = 200. The CUSQ test is slightly undersized. The UD max LR r test has
power close to that of sup LR - (1,¢), despite having a broader range of alternatives. The
power of the latter two tests dominates that of CUS(Q especially when T' = 100. Supplement
F shows the results to be robust for a static mean model with normal errors.

We now turn to a case with two breaks in variance. The DGP is y; = ey ¢; ~ i.i.d.
N(0,1+01(TY <t <Ty)), i.e., the variance increases at 7} and returns to its original level
at Ty. We consider two scenarios: {17 = [.3T], Ty = [.6T]} and {1} = [.2T], Ty = [.81]}.
We set T = 200 and ¢ = 0.10, 0.15. The magnitude of the break in ¢? varies between
6 = 0 (size) and § = 3. We again consider the UD max LR; r test with N = 5 but include
both the sup LR} 1 (1, €) test for a single break and the sup LR} 1 (2, ¢) test for two breaks to
assess the extent of power gains when specifying the correct number of breaks. The results are
presented in Table 3. Consider first the size of the tests. The sup LR} 1 (1,¢), sup LR} 1 (2,¢)
and UD max LR, r are slightly conservative and the CUS() even more so with an exact size
of 0.025. As expected, power increases as e increases since the range of alternatives is

smaller. When comparing the sup LR} 1 (1,€) and sup LR} 1 (2,¢) tests, the latter is more
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powerful, indicating that allowing for the correct number of breaks improves power. The
UD max LR, 1 has power between those of the sup LRj ; (1,¢) and sup LR} 1 (2,¢) tests.
These tests are considerably more powerful than the CUS@Q, which has little power.

5.2 Conditional tests

We now consider the properties of the tests that condition on either breaks in coefficients
(resp., variance) when testing for changes in variance (resp., coefficients). Consider first the
size and power of sup LRj 1 (Mg, 14, €|n = 0,m,) which tests for n, changes in o? conditional
on m, changes in 6 with ¢ = 0.1,0.2. We set m, = n, = 1 and the DGP is a simple mean
shift model with a change of magnitude p, at mid-sample with i.i.d. normal errors having
a change in variance of magnitude 6 (under H;) that occurs at [0.257"]. The results for size
are presented in Table 4. The test is slightly conservative and more so as the trimming is
larger. This is due to the fact that the limit distribution used is an upper bound. The results
for power are presented in Table 5. It increases rapidly with the magnitude of the variance
break 6 and with T'. It also marginally increases with the value of the trimming e.

We next investigate the size and power of sup LR} 1-(mq4, 14, €[m = 0,n,) which tests for
m, changes in § conditional on n, changes in o with ¢ = 0.1,0.2. We again set m, =
ne, = 1 and consider the mean model in which o2 changes at mid-sample. We also consider
an AR(1) model v, = ¢+ ay;—1 + e¢; with ¢ = 0.5, a = 0.5 and ¢; being i.i.d. normal
errors having a change in variance at [0.57 with magnitude #. This is done to investigate
potential size distortions due to large variance changes. As discussed in Section 4.1, a
change in variance induces a change in the marginal distribution of the regressors when
lagged dependent variables are included. The results for the size of the tests are presented in
Table 6. The size under the mean model is close to the nominal level but the test becomes
conservative as € increases since the limiting distribution used is a bound. The size under the
AR(1) model is very similar with the distortions being even smaller. This indicates that the
shrinking variance assumption is not binding. The results for power are presented in Table
7 for the mean model with a coefficient change at [0.257]. The power quickly increases as

the break magnitude # and T increase. The power again marginally increases with .

5.3 Size and power of the sup LR} and UD max LRy tests

We now consider the sup LR} ;- and UD max LR, 1 (simply labelled UD max) tests. To this
end, we use a model with GARCH(1,1) errors so that the DGP is y, = e¢; with e; = uy\/hy,
where u; ~ i.i.d. N(0,1), hy = 71 +ve2 | + phy_1, ho =71/ (1 =7y —p), 71 =1, p= 0.2 and
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v takes values 0.1, 0.3, 0.5. Also, € = 0.1, 0.2. For the UD max test, M = N = 2 and for the
sup LR} 1 test, we consider the following combinations: a) m, =n, =1, b) m, =1, n, = 2,
c) mg =2, n, = 1. We set T = 100, 200. The results, presented in Table 8, show that the
size is close to or slightly lower than the nominal 5% level (some cases have slight liberal size
distortions when 7" = 100, which, however, decrease when T' = 200). Supplement G shows
that the tests have good sizes with i.i.d. normal errors.

We now consider the power of these tests. Since some partial results for the one break
case are available in Tables S.6-5.7 for the sup LR} 1 test, we concentrate on the case with
a different number of breaks in coefficients and in variance. We also only consider i.i.d.
normal errors though the hybrid-type correction is still applied. Table 9 presents the results
for the case with one break in coefficient and two breaks in variance, in which case the DGP
is yp = py + pol(t > T°) + ey, ep ~ id.d. N(0,1+01(TY <t <T3)) with g =0, py = 0
and € = 0.1. Five different configurations of break dates are considered. We analyze two
forms of the sup LRj ;- test: a) one testing for a single break in both mean and variance, b)
one correctly testing for two changes in variance and one change in mean. This is done to
investigate the extent of the power differences when underspecifying the number of breaks.
As expected, the power increases rapidly with § and with 7. With the DGP used, the power
is similar whether accounting for one or (correctly) two breaks in variance and the power of
the UD max test is also similar to the power of both versions of the sup LR} ;- test. This
may, however, be DGP specific. Table 10 presents the results for the case with two breaks in
coefficient and one break in variance, with the DGP given by y; = p; +p, 1(T7 < t < T%)+ey,
e; ~ d.d.d. N(0,14 01(t > T")) with g, = 0 and p, = 6. Again, we consider two forms of
the sup LR} 1 test: one testing for a single break in both mean and variance, one correctly
testing for two changes in mean and one change in variance. Table 10 shows that for given
values of § and T', the power is lower than with one break in coefficient and two breaks in
variance. Also, the UD max test now has power between that of the test correctly specifying
the type and number of breaks and that underspecifying the number of changes in mean.
The difference can be substantial and, as in Bai and Perron (2006), the power of the U D max

test is close to that attainable when the type and number of breaks is correctly specified

6 Estimating the numbers of breaks in coefficients and in variance

To select the number of breaks in regression coefficients or error variance, we suggest a
specific to general procedure that uses the sequential tests proposed in Section 4.4. We

determine the number of coefficients and variance breaks allowing for a given number of
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breaks in the other component. When selecting the number of breaks in ¢, we consider
TP-9 and the test sup Seqor(m + 1, N|m, N) is applied, starting with Hy : m = 0 and
H, : m =1, where N is some pre-specified maximum number of breaks in variance. Upon
a rejection, we proceed to Hy : m = 1 versus H; : m = 2, and so on until the test stops
rejecting. Since the number of breaks n in o2 is unknown, contamination of the test statistics
by unaccounted breaks in o must be avoided. This can be achieved imposing a maximum
number N throughout. Similarly, to select the number of breaks in o2, TP-10 is considered
and the test sup Seqior(M,n + 1|M,n) is used for n = 0,1, ..., until a non-rejection occurs.
Again, some maximum number of breaks in the coefficients M is imposed. We performed a

simple simulation experiment with 7" = 200, ¢ = 0.15 and the DGP given by:
Y = fqg + pol(t >T°) + e, € ~idd. N0, 14+ 601(t > T7)),

with 1, = 0 so that at most one break in either mean or variance occurs. We consider the
following scenarios: a) no change in mean or variance, b) a change in mean only occurring
at mid-sample, c) a change in variance only occurring at mid-sample, d) a change in both
mean and variance occurring at a common date (mid-sample); e) a change in both mean and
variance occurring at different but close dates (T = [0.5T], T" = [0.7T]) or f) at different and
distant dates (T¢ = [0.25T],T" = [0.75T]). Different magnitudes of breaks are considered.
The procedure is applied setting the maximum number of breaks to M = 2 and N = 2 (i.e.,
four breaks overall). We also considered a split-sample method discussed in Supplement H.
The results are presented in Tables 11 and S.4. The procedures work quite well in selecting
the correct number and type of breaks. There are cases, however, where the probability of
correct selection is quite low with the split-sample method, e.g., when both changes in mean
and variance are not large and occur at different dates, especially far apart. The specific to
general approach tests for breaks in coefficients and variance separately allowing the other
component to have unknown breaks, which can avoid segmentations and lead to power gains.
The probabilities of selecting the correct number of each type of breaks are high with this
approach (higher than with the split-sample method, see Table S.10) when the changes are

not large and the break dates are different. Hence, we recommend this procedure in practice.

7 Empirical examples

We investigate structural changes in the conditional mean and in the error variance of US
inflation, quarterly from 1959:1 to 2018:4. For comparison purposes, we use Stock and Wat-

son’s (2002) transformation to achieve stationarity, i.e., we transform the GDP deflator (X;)
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into annual changes of the quarterly inflation rate as Y; = 100[In(X;/X;—1) —In(X;_4/X;_5)]-
The resulting series is presented in Figure 1. We use a simple AR(4) model of the form
Y, = p+ Z?Zl ¢;Y;—j+e;. Using the sample from 1959:1 to 2002:3 and a two-step procedure,
Stock and Watson (2002) found strong evidence of a structural change in the conditional
mean but no or weak evidence of changes in the error variance. Table 12(a) reports the
supL R4 and the UD max LR, tests. They suggest at least one change in either or both
the coefficients and the variance. Table 12(b) presents the results when testing for changes
in the coefficients, allowing for changes in the variance. As in Stock and Watson (2002),
we obtain strong evidence of a change in the conditional mean coefficients if we assume no
change in the error variance (sup LRsr with m, = 1 and UD max LR3 ¢ tests, both with
ne, = 0). The sequential procedure using the sup Seqy r test confirms that a one break spec-
ification is preferred with the break date estimated at 1982:1. However, any evidence of
changes in the conditional mean disappears once we jointly consider structural changes in
the error variance. To assess whether changes in variance are indeed present when account-
ing for potential changes in the regression coefficients, Table 12(c) presents the results of the
sup LRy and the UD max LR, r tests. These suggest the presence of breaks in the vari-
ance. The sequential test sup Seqio,r suggests 3 breaks at 1971:2, 1983:2 and 2006:3 when
m, = 0. Hence, contrary to Stock and Watson (2002), we conclude for 3 structural changes
in the error variance and no change in the conditional mean. The changes are such that the
variance went from 1.00 to 3.29 in 1971:2, then to 0.49 in 1983:1 and to 1.42 in 2006:3.

We now consider the US ex-post real interest rate and use the same quarterly series from
1961:1-1986:3 (see Figure 2), as in Garcia and Perron (1996) and Bai and Perron (2003a)
since it is a widely used example involving important mean shifts, though variance shifts
have not been investigated. We use a model with only a constant as regressor (i.e., z; = {1})
and account for serial correlations in the errors term via a HAC variance estimator using the
hybrid method. The estimate of the scaling factor 1, see (8), also uses the hybrid method.
Bai and Perron (2003a) found two large mean shifts in 1972:3 and 1980:3 and a small change
in 1966:4 using the sequential procedure proposed in Bai and Perron (1998, 2003a), which
allows for variance breaks occurring at the same time as the mean breaks, though not at
different times. Here, the focus is on assessing whether changes in variances are present and if
so whether and how the changes in mean present affect the results. Because they found three
breaks in the mean, we use our tests with m, up to 3 and n, up to 2. The trimming parameter
€ = 0.15 is used. The critical values of both tests when M = 3 are provided in Perron and
Yamamoto (2019b). Table 13(a) presents the results for the sup LRy 7 and the UD max LRy
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tests, which suggest clear rejections of the null hypothesis of no breaks. Table 13(b) presents
the results when testing for mean breaks accounting for possible variance breaks using the
sup LRz r and the UD max LR3 1 tests and also the sup Segg r test to determine the number
of breaks. We obtain evidence for two mean breaks in 1972:3 and 1980:3, irrespective of how
many variance breaks are accounted for. However, we do not find evidence for a mean break
in 1966:4. To investigate the presence of variance changes, Table 13(c) presents the results of
the tests for variance breaks accounting for mean breaks. If we account for no mean breaks
(mq = 0), two variance breaks are found in 1972:3 and 1981:2; the former is the same and
the latter is close to the dates of the two large mean breaks. However, if one mean break
is allowed (m, = 1), only one variance break is found in 1972:3, which suggests that the
variance break in 1981:2 was a false rejection due to the ignored mean break. The next issue
is whether the 1972:3 variance break is spurious. To see this, we account for two breaks in
the mean (m, = 2) and find again two breaks in the variance; one in 1972:3 and the other is
in 1964:3. The variance break in 1964:3 is relatively small and was thereby masked when the
two mean breaks were not accounted for. More importantly, we again obtain no evidence
for a break around 1980:3 but rather one in 1972:3. Therefore, we conclude that both the
mean and the variance changed in 1972:3 but only the mean changed in 1980:3, while only
the variance changed in 1964:3. This latter change may be responsible for Bai and Perron’s
(2003a) finding of an additional mean break in 1966:4 using tests that allow for variance
changes, though at the same dates as the mean changes. The change are such that the mean
went from 1.36 to -1.80 in 1972:3 and to 5.64 in 1980:3, while the variance changed from
1.09 to 1.87 in 1964:3 and then to 6.91 in 1972:3.

8 Conclusion

This paper provided tools for testing for multiple structural breaks in the error variance
in the linear regression model with or without the presence of breaks in the regression
coefficients. An innovation is that we do not impose any restrictions on the break dates,
i.e., the breaks in the regression coefficients and in the variance can happen at the same
time or at different times. We proposed statistics with asymptotic distributions invariant
to nuisance parameters and valid with non-normal errors and conditional heteroskedasticity,
as well as serial correlation. Extensive simulations of the finite sample properties show that
our procedures perform well in terms of size and power. A specific to general procedure to
estimate the number and type of breaks based on a proposed sequential test is shown to

perform well in selecting the number and types of breaks.
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Appendix

Proof of Theorem 1: Part (a) follows from Qu and Perron (2007a, Theorem 5) under Al.
For part (b),
sup LRy 1 (Mg, Na,eln = 0,my,)
= 2log Lo (T¢, ..., TS, TY, ..., TY.) — log Lp(T%, ..., T2, )]

= Tlogd® — S\ (TP — TP ) log 62
= 2?21[1111 log 5?,1+1 — T} log 5%,1' — (T, — 1) log &12+1] + 17 (log 5%,1 — log ﬁ)

where 5%71- = (Tp)! Z;‘Zl(yt — B zﬁm)Q with EJ = gj for TAJ'-Zl <t< ch (also let (52]- = 6?
C! C y A N’U ~'U - T‘iv Ve fy

for TjEl <t< Tjo) (j=1,...mg+1)and 62 = (T} =T )" zt:i&ﬁrl(yt — 2,8 — 2015)%

Applying a Taylor expansion to log 5%,1‘ 41, log 5?’2. and log &7, , around log 02, we obtain

sup LR2,T (maa Ng, 5|n = 07 ma) = Z;ZI(FIZ,T + FZi,T) + OP(1>

where
Fli,T = (o ) [T+1&1 i+1 TUUU (Tzvﬂ - ﬂv)&?+1]
1T s . 2
= (00) " X, 5, | (e — T8 — 21615)% — (ye — 743 — 2,61
and
~2 2 ~2 2 A2 2
i Li+1 — 00 =091, — 902 v oy (i o
By = —(1/2)] z+1(+—2)2 — T (=52 = (T}, — T, )(%)21
o) o) o)
= (1/2)(I +II+II). (A.1)

We first show that F}; = o, (1). We can express FY ,, as

(Uitr + Xia(B°

+Zi1 (87 —80,)) (Upgr + Xi1 (B°
—(Uip1 + Xia (8° = B)

+Zi1 (67 —80)) (Uit1 + Xipa(B° = B) + Zi1(87, )

- )
= B) + Zina (805 = b15))
~f

(B = BY X{ 1 Xis1(B = B) + (b1 — 615) Z111 Zisa (815 — B1j)
+(B = B) X/ 11 Zi11(80 — 61) + 2(8 = BY X111 Xi1 (B = B)
+2(80; = b13)' ZLy1 Zisa (bug — b1g) + 208 — BY X[ 1 Zia (675 — bu)
+2(8 = B)'XL41 Ziv1 (b1 — Su5) + 28 — BY X[ Ussr + 2(80 — 8e5) 211 Uia
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The result follows using the facts that X X;11 = O,(T), Z},1Ziy1 = Op(T), X[ 1 Zi11 =
Op(T), X/ U1 = Op(TY?) and Z], Uip1 = O,(TY?). Also, since under H, with Al,
the estimates of the break fractions converge to the true break fractions at a fast enough
rate so that the estimates of the parameters of the models are consistent and have the
same limit distribution as when the break dates are known, we have: ° — B = Op(T_l/ 3,
8y — b1; = O,(T™Y2), B— P = 0,(T™Y2) and é;; — 6, ; = 0,(T~/2). The last two quantities
are o,(T~'/?) since VT (3 — °) and VT(3 — °) have the same limit distribution under Hy,

and likewise for v/T(6,; — &2 ) and V/T(6,; — (52]-). For Fj 1,

t,J
VI = (@) "SI H — 218 — 280500} — 1] = (T2) V2 S0 [(uafoo)? — 1] + 0,(1)
= \/EW(/\;}—FI)/ )\;1—1-1

by Al. Similarly, VII = W (X\’)//A? and

VITI = (T2 = T0)/TI7 T2 S5 /00) = 1]+ 0,(1)
= (T3 — T2V T V2 5 (e fo0)? — 1] = T2 S0 [(ue/00)? — 11} + 0p(1)

= VOIWL) — WA/ /A — AL

Therefore,

‘ W00 W) (WO,) = W)
Fz _ 92 i+1 . i) i+1 7
i = W2 { Ait1 Ai Aig1 — Ai

W) = ALV (4)?
NN — D)

= (¥/2)

This yields

ra (NWAL) = N W)
sup LR , (mayna7€|n = Oa ma) = sup Z o v VU v
2T (ATssAng JEAS . i=1 2 >\i+1)\i ()‘z‘+1 - >‘i)

C B IOL) AW
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because A . C A, .. For part (c),

sup LRs 1 (Mg, Ng, elm = 0,n,)
= 2log Ly (T¢, ..., TS T, .., TY.) —log Lp(TY, ..., T2)
= YT - 1) legat = i (I — T y) log 67
~2 a Tl — Tz‘v 2 3 = T T — Tzv
where 7 = (17 T2 ) S (- atf - B and 67 = (B - T ) ST (-
z,3 — 2,6, ;)*. Applying a Taylor expansion on log o7 and log 62 around log 0%, we obtain
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whete Ffz = (T — T.,)(5 /%) — (T — T¢.1)(63/0%) and

Fyp=—1/2)T} = T2 )57 — ohl/on)® — (T7 = TL)([87 — okl /ok)):
We first show that F3 ;. = o, (1) as follows. We have:

~2 ~2
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where (T} — T /TIVT (5] — o%)/0%)? and (T — Ty /TIVT (67 — o%)/o%]? have the
same limit distribution under A3. For F} T, let o9 = 019 without loss of generality, then
St R = R  |(0 — T)E - (T - T)e2)
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The first term becomes,
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where D"(1,5) = Zgl(yt 23— 216)? and D¥(j) = 5 (y: — 2,3 — 26;)2. The second

t=T¢_,+1
term is 0,(1) by A3. Using similar derivations as in Qu and Perron (2007b), we obtain

D"(1,j+1)—-D"(1,5) — D“(j + 1)
= —UljnZuin(ZijnZuin) " ZigaUsjer + Ui 20( 20, 20) 7 215004
U]+1Z (251 Z41)” 1Z,-s—lU—i-l + 0p(1),
XS (X510) = X5 W9
)‘5+1/\C<)‘§+1 A7)
by A2. This yields

A1) = AW O[]

sup LR?),T (maana75|m - Oana) = Sup c c/\C c )
(XS, ma JEAY j=1 >‘]+1)\ ()\]-‘rl A )
Ma )\C )\C )\c W )\C
< 3 IEWR =X WO
()‘17 y>‘c a)EAC,E j=1 >\j+1A ()\]+1 )\j)

A-3



because AY_ C A... For part (d), we have:

sup LRy 1 (Ma, N, elm =n = 0)

= 2 sup log L (T¢,..,T5 ;17 ..., Ty ) — log L7
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as shown in part (c). The second term is the same as (A.1) but with no changes in ¢ to

construct Ziii, i.e., LR, defined by (11). Hence,
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Table 1: Asympotic critical values of the upper bound of the sup LR} ;- test

(the entries are quantiles « such that P ((nq + mqe) " 'sup LR} < z) > a)

e=0.10 e=0.15 e=10.20 e=0.25 UDmax LR}
ne=1 Ng= ne=1 Ng= 2 ne=1 Ng=2 ne=1 M=N=2

«Q Mg=1 Mg=2 | Mg=1 Meg=2 | Mmg=1 Mmeg=2 | mg=1 meg=2 | mg=1 mg=2|mg=1| me=1 | =010 e£=0.15 £=0.20
.90 6.59 6.34 6.32 6.20 6.21 5.75 5.72 5.46 5.83 5.19 5.18 5.48 7.18 6.61 6.15
.95 7.63 7.12 7.10 6.83 7.18 6.49 6.46 6.13 6.79 5.93 5.89 6.43 8.03 7.51 7.05
975 8.54 7.78 7.75 7.44 8.12 7.17 7.23 6.71 7.70 6.56 6.70 7.42 8.81 8.32 7.87
.99 9.79 8.73 8.70 8.17 9.24 7.98 8.00 7.45 8.83 7.42 7.52 8.56 10.00 9.42 8.95
.90 7.88 7.96 7.18 7.41 7.45 7.31 6.54 6.66 7.10 6.72 6.01 6.70 8.47 7.93 7.39
.95 8.87 8.78 7.94 8.03 8.45 8.12 7.36 7.33 8.12 7.52 6.77 7.72 9.37 8.88 8.42
975 9.85 9.52 8.69 8.69 9.45 8.91 8.02 7.88 9.08 8.34 7.50 8.69 10.32 9.77 9.40
.99 11.12 10.55 9.52 9.52 10.73 9.90 8.93 8.73 10.27 9.31 8.33 9.94 11.47 10.96 10.54
.90 8.98 9.34 7.93 8.44 8.53 8.63 7.30 7.63 8.09 7.94 6.70 7.67 9.73 9.09 8.55
.95 10.06 10.23 8.72 9.11 9.52 9.51 8.07 8.31 9.11 8.77 7.50 8.75 10.66 10.08 9.48
975 11.08 10.98 9.43 9.75 10.61 10.30 8.80 8.98 10.18 9.59 8.25 9.73 11.48 10.93 10.41
.99 12.43 12.01 10.33 10.53 11.87 11.30 9.67 9.80 11.50 10.50 9.09 10.89 12.66 12.19 11.64
.90 9.96 10.60 8.54 9.32 9.51 9.90 7.87 8.56 9.09 9.17 7.31 8.66 10.88 10.24 9.64
.95 11.10 11.51 9.38 10.05 10.54 10.83 8.73 9.30 10.14 10.01 8.14 9.73 11.85 11.19 10.66
975 12.17 12.30 10.13 10.72 11.61 11.62 9.47 9.98 11.17 10.89 8.91 10.87 12.81 12.20 11.53
.99 13.50 13.36 11.07 11.59 13.08 12.62 10.42 10.73 12.67 11.90 9.76 12.33 13.99 13.39 12.84
.90 10.94 11.81 9.19 10.21 10.45 11.03 8.53 9.41 9.99 10.36 7.94 9.56 12.07 11.33 10.70
95 12.14 12.76 10.00 10.99 11.66 12.01 9.33 10.13 11.20 11.33 8.75 10.73 13.06 12.38 11.84
975 13.22 13.68 10.74 11.63 12.72 12.89 10.09 10.82 12.28 12.22 9.54 11.93 13.99 13.38 12.86
.99 14.47 14.66 11.77 12.50 14.06 14.13 11.15 11.67 13.56 13.29 10.52 13.23 15.16 14.50 13.95




Table 2: Size and power of the sup LR} 1(ng = 1,€), UDmax LRy 7 and CUSQ tests in a dynamic model with GARCH(1,1) errors

(DGP: y; = ¢+ ays—1 + e, e = ug\/hy, with uy ~i.i.d. N(0,1), hy = 71 + 721 (¢t > [0.5T]) +ve?_; + phi—1, ho =11/ (1 — v —p), c=0.5,71 = 0.1,
p=0.2; ¢ =0.15).

T =100

a=0.2 a=0.7

v=0.1 v=0.3 v=0.5 v=0.1 v=0.3 v=0.5

T2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0.059 0.059 0.029 | 0.083 0.086 0.039 0.098 0.099 0.042 0.066 0.061 0.029 | 0.078 0.084 0.038 | 0.097 0.092 0.039
0.05 | 0.171 0.167 0.158 | 0.165 0.171 0.103 0.151 0.155 0.082 0.164 0.158 0.149 | 0.147 0.149 0.100 | 0.137 0.140 0.080
0.1 0.396 0.373 0.354 | 0.307 0.307 0.232 0.224 0.228 0.136 0.383 0.367 0.356 | 0.300 0.297 0.232 0.218 0.224 0.138
0.15 | 0.593 0.575 0.574 | 0.432 0.409 0.349 0.312 0.312 0.199 0.591 0.573 0.564 | 0.425 0.414 0.330 | 0.307 0.308 0.201
0.2 0.744 0.725 0.693 | 0.542 0.542 0.446 0.415 0.408 0.270 0.741 0.723 0.684 | 0.534 0.534 0.441 0.384 0.385 0.259
0.3 0.902 0.888 0.851 0.741 0.738 0.626 0.535 0.540 0.370 0.897 0.887 0.856 | 0.724 0.724 0.624 | 0.534 0.534 0.376

T =200

a=0.2 a=0.7

v=0.1 v=0.3 v=0.5 v=0.1 v=0.3 v=0.5

T2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0.049 0.044 0.034 | 0.058 0.060 0.035 0.064 0.063 0.045 0.055 0.056 0.036 | 0.061 0.064 0.034 | 0.060 0.061 0.040
0.05 | 0.315 0.311 0.335 0.217 0.202 0.203 0.129 0.123 0.110 0.311 0.303 0.332 | 0.208 0.202 0.205 0.122 0.115 0.100
0.1 0.709 0.692 0.751 0.446 0.431 0.455 0.263 0.249 0.225 0.702 0.682 0.734 | 0.442 0.428 0.448 | 0.257 0.241 0.222
0.15 | 0.918 0.910 0.928 | 0.672 0.648 0.649 0.404 0.384 0.345 0.918 0.912 0.923 | 0.648 0.641 0.643 | 0.386 0.370 0.335
0.2 0.980 0.977 0.979 | 0.780 0.764 0.764 | 0.510 0.497 0.456 0.981 0.980 0.981 0.777 0.766 0.763 | 0.496 0.489 0.441
0.3 0.997 0.996 0.997 | 0.910 0.903 0.878 0.682 0.662 0.601 0.997 0.997 0.998 | 0.903 0.898 0.877 | 0.676 0.654 0.606




Table 3: Size and power of the sup LRiT(na, ), UDmax LRy v and CUSQ tests with normal errors and two variance breaks

(DGP: yr = e4; e ~ivi.d. N(0,1+01(T7 <t <T3), T = 200)

TP = [3T], Td = [.67]

Ty = [2T7], Ty = [ 8T]

e=0.10 e =0.15 e =0.10 e =0.15

0 Ng=1 mng=2 UDmax | ng=1 mng=2 UDmax CUSQ ng=1 mng=2 UDmax | na=1 mng=2 UDmax CUSQ

0 0.035 0.034 0.036 0.033 0.025 0.030 0.025 0.035 0.034 0.036 0.033 0.025 0.030 0.025
0.25 0.049 0.040 0.045 0.066 0.054 0.064 0.031 0.067 0.043 0.062 0.063 0.052 0.064 0.035
0.5 0.111 0.120 0.103 0.117 0.159 0.121 0.059 0.158 0.138 0.139 0.166 0.170 0.165 0.036
0.75 0.164 0.260 0.195 0.171 0.294 0.209 0.085 0.263 0.283 0.265 0.276 0.360 0.287 0.044

1 0.213 0.418 0.289 0.239 0.493 0.340 0.124 0.390 0.472 0.390 0.428 0.520 0.442 0.061
1.25 0.291 0.575 0.404 0.328 0.674 0.495 0.147 0.538 0.647 0.558 0.563 0.707 0.606 0.053
1.5 0.356 0.703 0.513 0.405 0.778 0.613 0.197 0.647 0.780 0.676 0.706 0.837 0.731 0.065

2 0.456 0.835 0.701 0.530 0.893 0.761 0.276 0.798 0.915 0.841 0.828 0.946 0.868 0.083
2.5 0.621 0.935 0.848 0.686 0.959 0.882 0.375 0.907 0.971 0.931 0.930 0.986 0.950 0.133

3 0.693 0.959 0.895 0.728 0.983 0.919 0.430 0.943 0.987 0.961 0.963 0.993 0.977 0.120




Table 4: Size of the sup LR} 7(ma = 1,0, = 1, gln = 0,m, = 1) test with different trimming parameter
¢ in the case of normal errors

(DGP: yr = pq + po1(t > [0.5T]) + s, er ~ i.i.d. N(0,1), uy = 0).

T =100 T =200
,ug\a 0.1 0.15 0.2 0.25 0.1 0.15 0.2 0.25
0 0.045 0.042 0.030 0.023 | 0.039 0.032 0.030 0.031
0.1 0.038 0.028 0.033 0.030 | 0.045 0.046 0.036 0.037
0.25 0.037 0.039 0.034 0.030 [ 0.034 0.034 0.035 0.030
0.5 0.037 0.035 0.036 0.033 [ 0.031 0.025 0.029 0.027
0.75 0.043 0.047 0.046 0.041 [ 0.044 0.033 0.035 0.031
1 0.034 0.031  0.031 0.031 | 0.034 0.027 0.020 0.017
2 0.030 0.023 0.028 0.028 [ 0.041 0.029 0.028 0.029
4 0.034 0.032 0.031 0.027 [ 0.034 0.026 0.024 0.026
10 0.038 0.033 0.032 0.031 [ 0.038 0.033 0.025 0.022
20 0.031 0.030 0.035 0.027 [ 0.040 0.034 0.023 0.021

Table 5: Power of the sup LR 1(mq = 1,1, = 1,eln = 0,m, = 1) test with different trimming
parameter ¢ in the case of normal errors

(DGP: y¢ = pq + po1(t > [0.5T]) + ey, e; ~d.5.d. N(0,1+ 61(¢ > [0.25T7)).

T =100
e=0.1 e=0.2

Nps |0 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20
0.25 0.063 0.046 0.047 0.056 0.065 0.063 0.053 | 0.056 0.040 0.043 0.049 0.045 0.044 0.047
0.5 0.101  0.094 0.089 0.090 0.099 0.096 0.101 | 0.091 0.092 0.097 0.077 0.096 0.091 0.101
0.75 0.150 0.162 0.133 0.168 0.177 0.181 0.178 | 0.168 0.174 0.160 0.176 0.177 0.176 0.171
1 0.237 0.233 0.218 0.212 0.222 0.244 0.242 | 0.270 0.285 0.226 0.225 0.231 0.236 0.235
1.25 0.270  0.300 0.319 0.293 0.353 0.362 0.327 | 0.318 0.323 0.335 0.316 0.375 0.383 0.321
1.5 0.388 0.379 0.378 0.419 0.417 0.448 0.398 | 0.443 0.431 0.435 0.425 0.448 0.462 0.445
2 0.533 0.519 0.496 0.557 0.556 0.598 0.559 | 0.592 0.586 0.558 0.588 0.602 0.620 0.594
3 0.760 0.771 0.771 0.779 0.830 0.843 0.802 | 0.827 0.823 0.825 0.822 0.857 0.863 0.838
4 0.887 0.876 0.865 0.892 0.908 0.909 0.916 | 0.921 0.910 0.920 0.924 0.927 0.943 0.940

= 200
e=0.1 e=0.2

Npsy |0 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20
0.25 0.052 0.066 0.066 0.077 0.084 0.092 0.090 | 0.063 0.067 0.059 0.073 0.074 0.067 0.071
0.5 0.175 0.177 0.153 0.204 0.178 0.207 0.219 | 0.205 0.188 0.165 0.216 0.185 0.199 0.212
0.75 0.311 0.352 0.340 0.361 0.382 0.369 0.365 | 0.383 0.385 0.364 0.376 0.384 0.385 0.381
1 0.485 0.506 0.469 0.518 0.553 0.529 0.567 | 0.551 0.566 0.529 0.542 0.585 0.574 0.599
1.25 0.648 0.643 0.660 0.716 0.716 0.717 0.741 | 0.695 0.685 0.694 0.729 0.745 0.760 0.770
1.5 0.771 0771 0.773 0.821 0.827 0.842 0.821 | 0.834 0.813 0.824 0.852 0.851 0.871 0.851
2 0.918 0.907 0.928 0.933 0.962 0.942 0.955 | 0.943 0.943 0.953 0.950 0.972 0.961 0.973
3 0.990 0.996 0.992 0.996 0.999 0.998 0.996 | 0.997 0.998 0.996 0.996 0.999 0.999 0.998
4 0.998 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000  1.000 1.000




Table 6: Size of the sup LR 7(ma = 1,0, = 1, glm = 0,n, = 1) test with different trimming parameter

¢ in the case of normal errors
(DGP: yr = pq + e, ¢ ~ii.d. N(0,1+ 01(t > [0.5T]), py = 0).

T =100 T = 200
9\6 0.1 0.15 0.2 0.25 0.1 0.15 0.2 0.25
0 0.043 0.053 0.051 0.031 | 0.042 0.041 0.039 0.036
0.1 0.050  0.053 0.033 0.037 | 0.027 0.035 0.033 0.026
0.25 | 0.042 0.042 0.042 0.023 | 0.034 0.044 0.039 0.040
0.5 0.044 0.024 0.038 0.038 | 0.036 0.035 0.035 0.028
0.75 | 0.039 0.039 0.037 0.033 | 0.043 0.038 0.040 0.034
1 0.033 0.043 0.045 0.027 | 0.029 0.044 0.042 0.029
2 0.046  0.045 0.039 0.022 | 0.038 0.032 0.029 0.013
4 0.030 0.054 0.035 0.020 | 0.038 0.032 0.030 0.014
10 0.034 0.043 0.030 0.027 | 0.037 0.035 0.031 0.015
20 0.046  0.039 0.027 0.027 | 0.032 0.039 0.030 0.012

(DGP: y¢ = c+ ayr—1 + ey, ep ~i.d.d. N(0,1+01(¢t > [0.5T]), c =0, a = 0.5).

T =100 T =200
MNe| 01 o015 02 025 | 01 015 02 025
0 |0.069 0066 0.066 0.055|0.049 0.043 0.050 0.042
0.1 | 0.057 0.060 0.062 0.056 | 0.044 0.047 0.048 0.039
0.25 | 0.057 0.055 0.055 0.049 | 0.039 0.044 0.053 0.035
0.5 | 0.050 0.058 0.048 0.043 | 0.051 0.044 0.050 0.035
0.75 | 0.055 0.055 0.057 0.046 | 0.043 0.036 0.036 0.034
1 | 0065 0055 0051 0042 | 0.044 0.053 0.045 0.028
2 | 0.047 0.066 0.062 0.045 | 0.043 0.040 0.040 0.027
4 10052 0053 0.039 0.025 | 0.030 0051 0.031 0.017
10 | 0.050 0.063 0.050 0.026 | 0.043 0.038 0.034 0.018
20 | 0.040 0.065 0.059 0.024 | 0.048 0.038 0.034 0.025

Table 7: Power of the sup LR3 7(ma = 1,1, = 1,6lm = 0,n, = 1) test with different trimming
parameter ¢ in the case of normal errors

(DGP: yp = pq + py1(t > [0.25T)) + 4, ¢ ~ i.i.d. N(0,1+ 01(¢ > [0.5T7]), uy = 0).

T =100
e=0.1 e=0.2
uo\@ | 0 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20
0.1 0.050 0.050 0.055 0.058 0.059 0.057 0.059 | 0.050 0.049 0.043 0.034 0.031 0.037 0.030
0.25 0.096 0.092 0.092 0.082 0.078 0.074 0.080 | 0.117 0.115 0.110 0.088 0.077 0.077 0.077
0.5 0.349 0.351 0.340 0.300 0.263 0.255 0.245 | 0.353 0.350 0.334 0.305 0.283 0.283 0.243
0.75 0.670 0.663 0.651 0.580 0.538 0.503 0.485 | 0.702 0.696 0.692 0.625 0.586 0.586 0.544
1 0.901 0.899 0.892 0.853 0.821 0.799 0.785 | 0.930 0.929 0.929 0.901 0.866 0.866 0.811
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000  1.000 1.000
T =200
e=0.1 e=0.2
w\0 | 0 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20
0.1 0.059 0.062 0.054 0.046 0.043 0.045 0.049 | 0.059 0.056 0.044 0.058 0.055 0.053 0.042
0.25 0.175 0.170 0.178 0.140 0.136 0.136  0.138 | 0.192 0.179 0.183 0.158 0.142 0.132 0.135
0.5 0.650 0.609 0.585 0.556 0.518 0.494 0.466 | 0.681 0.655 0.673 0.583 0.542 0.506 0.482
0.75 0.939 0.959 0.934 0.913 0.901 0.882 0.847 | 0.963 0.965 0.963 0.913 0.909 0.878 0.883
1 1.000 0.999 0.997 0.995 0.989 0.988 0.987 | 1.000 0.998 0.999 0.998 0.998 0.996 0.995
4 1.000 1.000 1.000 1.000 1.000 1.000  1.000 | 1.000 1.000 1.000 1.000 1.000  1.000 1.000




Table 8: Size of the sup LR} 7-(mq,nq) and UD max LR4 7 tests in the case of GARCH(1,1) errors

(DGP Yt = €¢, €t = Ut\/h_t, with u; ~ i.7.d. N(O, 1), hi =71 —|—’ye?71 =+ l)ht—l, 71 =1, p= 0.2, ho = 7-1/ (1 e p))

T=100
e=0.1 e=0.2
Y | mg=ng=1 mg=1,n,=2 mg=2,n,=1 UDmax | Mmg=nga=1 me=1,n,=2 my=2,n,=1 UDmax
0.1 0.044 0.046 0.047 0.050 0.037 0.040 0.035 0.046
0.3 0.048 0.065 0.051 0.073 0.041 0.052 0.042 0.055
0.5 0.072 0.083 0.075 0.085 0.065 0.069 0.059 0.061
T=200
e=0.1 e=0.2
Y | ma=ng=1 my=1,n,=2 mg=2,n,=1 UDmax | Me=ng=1 my=1,n,=2 mg=2,n,=1 UDmax
0.1 0.034 0.035 0.034 0.041 0.036 0.034 0.037 0.037
0.3 0.032 0.041 0.035 0.043 0.036 0.037 0.031 0.040
0.5 0.039 0.044 0.041 0.051 0.040 0.040 0.024 0.040




Table 9: Power of the sup LRZ,T(ma, ng) and UD max LRy 7 tests for DGPs with one break in coefficients and two breaks in
variance

(DGP: 1 = iy + pio1(t > T) + €4, € ~ iind. N(0,1 4 01(T? <t <TY)), iy =0, 1y = 0, = 0.1)

me=1 mg=1 UDmax | meg=1 mg=1 UDmax | me=1 m,=1 UDmax me=1 my=1 UDmax me=1 me=1 UDmax
ne=1 ng=2 ne=1 ng=2 ng=1 Mng=2 ne=1 ng=2 ng=1 mng=2
T°=T7=[.3T],Ty= [.6T) °=T¢ = [.6T|,T = [.3T) | T°= [.3T|,T{= [.5T), To= [.6T] | T°= [.5T|,T = [.3T),To= [.6T] | T°= [.6T),T,= [.3T], T5= [.5T]
0 T =100
0.25 0.081 0.069 0.090 0.091 0.082 0.097 0.083 0.069 0.086 0.089 0.085 0.097 0.092 0.079 0.100
0.5 0.263 0.263 0.280 0.314 0.280 0.313 0.262 0.233 0.269 0.320 0.294 0.326 0.318 0.281 0.315
0.75 0.576 0.560 0.586 0.655 0.631 0.643 0.592 0.570 0.583 0.687 0.661 0.691 0.648 0.628 0.650
1 0.854 0.860 0.857 0.892 0.902 0.896 0.874 0.861 0.877 0.895 0.906 0.918 0.890 0.886 0.888
1.25 0.980 0.974 0.976 0.988 0.985 0.984 0.982 0.974 0.982 0.986 0.983 0.987 0.983 0.987 0.987
1.5 1.000 1.000 0.997 0.998 0.999 1.000 0.999 0.997 0.998 1.000 1.000 1.000 1.000 0.999 0.999
T = 200
0.25 0.119 0.124 0.129 0.156 0.138 0.159 0.128 0.109 0.125 0.152 0.153 0.158 0.142 0.134 0.149
0.5 0.552 0.561 0.569 0.633 0.622 0637 0.547 0.515 0.545 0.642 0.645 0.656 0.628 0.593 0.624
0.75 0.925 0.929 0.925 0.961 0.958 0.955 0.935 0.927 0.931 0.968 0.976 0.971 0.966 0.956 0.962
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.999 1.000
1.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Table 10: Power of the sup LRZLT(ma7 ng) and UD max LRy r tests for DGPs with two breaks in coefficients and one break in
variance
(DGP: yp = pq + o l(TF <t < T§) + ey, ep ~di.d. N(0,1+601(t > TY)), uy = 0,9 =6, =0.1).
Mme=1 Mmg=2 UDmax | Mmg=1 my=2 TUDmax | my=1 my=2 UDmax me=1 mg=2 UDmax Mme=1 mg=2 UDmax
ng=1 ng=1 ng=1 ng=1 Ng=1 ng=1 nge=1 mng=1 ng=1 ng=1
T¢=T"=[.3T],To= [.6T) | Tf=[.3T],To=T"= [.6T] | T¢=[5T],To=[.6T], T = [.3T] | T¢=[.3T],To=[.6T], T = [.5T) | T¢=[.3T],To= [.5T),T"= [.6T]
0 T =100
0.25 0.064 0.085 0.081 0.076 0.080 0.091 0.051 0.051 0.056 0.073 0.080 0.087 0.061 0.065 0.080
0.5 0.107 0.181 0.164 0.140 0.194 0.177 0.085 0.092 0.101 0.141 0.194 0.178 0.098 0.150 0.134
0.75 0.238 0.405 0.352 0.294 0.479 0.423 0.137 0.161 0.165 0.282 0.468 0.416 0.187 0.358 0.307
1 0.412 0.688 0.612 0.512 0.809 0.750 0.237 0.278 0.276 0.498 0.770 0.720 0.302 0.677 0.577
1.25 0.566 0.849 0.800 0.709 0.958 0.923 0.299 0.436 0.405 0.684 0.933 0.905 0.399 0.876 0.806
1.5 0.707 0.935 0.902 0.854 0.995 0.987 0.409 0.564 0.558 0.835 0.987 0.980 0.520 0.964 0.934
T = 200
0.25 0.079 0.117 0.097 0.083 0.104 0.113 0.060 0.066 0.073 0.086 0.115 0.114 0.075 0.088 0.096
0.5 0.275 0.421 0.379 0.330 0.490 0.447 0.145 0.180 0.185 0.335 0.486 0.453 0.224 0.378 0.340
0.75 0.590 0.814 0.774 0.688 0.913 0.870 0.333 0.420 0.408 0.681 0.895 0.852 0.480 0.818 0.769
1 0.844 0.976 0.963 0.919 0.997 0.994 0.524 0.673 0.654 0.891 0.992 0.986 0.700 0.982 0.960
1.25 0.964 0.996 0.992 0.991 1.000 1.000 0.736 0.868 0.859 0.983 1.000 1.000 0.861 0.999 0.999
1.5 0.995 1.000 1.000 1.000 1.000 1.000 0.853 0.945 0.942 0.999 1.000 1.000 0.944 1.000 1.000




Tablell: Finite sample performance of the specific to general sequential procedure to select the number of breaks in coefficients and variance
(DGP: yr = pq + pol(t > T°) + €4, er ~i.i.d. N(0,1401(t > T?)), e = 0.15, T = 200).

m=n=10 m=n=1 m=n=1
Te=[.5T],T"= [.7T) T¢=[.25T), T"= [.75T]
o=0=1 | po=1,0=3 | po=1,0=5 | po=0=2 | po=0=1| py=0=2 | puy=1,0=3
prob(m = 0,n = 0) 0.906 0.000 0.000 0.000 0.000 0.000 0.000 0.000
prob(m =0,n=1) 0.042 0.000 0.002 0.003 0.000 0.000 0.000 0.000
prob(m = 0,n = 2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
prob(m =1,n=0) 0.043 0.286 0.001 0.000 0.023 0.343 0.028 0.004
prob(m =1,n=1) 0.007 0.680 0.954 0.956 0.936 0.628 0.937 0.963
prob(m =1,n=2) 0.000 0.009 0.002 0.016 0.019 0.007 0.011 0.010
prob(m = 2,n = 0) 0.002 0.008 0.000 0.000 0.000 0.010 0.001 0.000
prob(m =2,n=1) 0.000 0.016 0.023 0.025 0.022 0.011 0.020 0.021
prob(m = 2,n = 2) 0.000 0.001 0.000 0.000 0.000 0.001 0.003 0.002
m=n=1 m=1n=0 m=0n=1
Te=T"= [.5T] T°= [.5T] TY= [.5T

po=0=1 | pu,=1,0=3 Ho=1 o= 2 o= 3 0=1 0=2 0=3
prob(m = 0,n = 0) 0.000 0.000 0.000 0.000 0.000 0.234 0.005 0.000
prob(m = 0,n = 1) 0.003 0.029 0.000 0.000 0.000 0.706 0.924 0.924
prob(m = 0,n = 2) 0.000 0.002 0.000 0.000 0.000 0.013 0.027 0.031
prob(m = 1,n = 0) 0.240 0.000 0.931 0.935 0.934 0.009 0.000 0.000
prob(m =1,n=1) 0.729 0.917 0.039 0.038 0.038 0.035 0.040 0.041
prob(m = 1,n = 2) 0.008 0.034 0.000 0.000 0.000 0.002 0.003 0.003
prob(m =2,n=0) 0.005 0.000 0.028 0.023 0.024 0.001 0.000 0.000
prob(m =2,n=1) 0.014 0.017 0.002 0.004 0.004 0.000 0.001 0.001
prob(m = 2,n = 2) 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

Note: prob(m = j,n = i) represents the probability of choosing j breaks in mean and i breaks in variance. The upper bounds for

the coefficients and the variance breaks are set to M =2 and N = 2.



Table 12: Empirical results for the inflation rate

a) Tests for structural changes in mean and/or variance

supLR47T UD max LR47T
me=1 mg=2 my=3 M=3,N=3
neg =1 12.18%* 10.78 9.58 15.91%**

ne =2 1527  13.33*** 11.81**
ne =3 1591 15.06"** 14.03***

b) Tests for structural changes in mean

supLR3 1 UDmax LR3 7 supSeqy break dates
me=1 my=2 myg=3 M=3 Mmeg=1 mey=2 myg=3
ng =0 22.50%" 19.42***  15.93** 22.50** 10.17 9.38 4.59 1982:1
Ng = 8.54 7.57 7.04 8.54 6.19 6.99 4.59
Ng = 2 5.72 6.62 7.37 7.37 2.79 4.96 3.10
Ng =3 9.90 9.72 10.03 10.03 2.74 4.80 4.74

¢) Tests for structural changes in variance

supL Ry 1 UDmax LRy 1 supSeqio, T break dates
ng =1 Ng = 2 Ng = 3 N=2 Ng =1 Ng=2 MNg=3
me =0 16.00"* 21.30"** 16.49*** 21.30%** 18.69***  13.05** 5.21 1971:3 1983:2 2006:3
Mg = 9.37* 13.77%*  14.00*** 14.00%** 18.97***  16.21*** 5.54 1971:3 1982:1 2006:3
Mg = 2 3.33 8.26™* 11.22%** 11.22** 18.97***  16.79*** 6.73
me =3 1.69 9.14** 11.90*** 11.90** 19.93***  16.79*** 7.18

Notes: *,** and *** indicate significance at the 10%, 5% and 1% levels, respectively.

Table 13: Empirical results for the real interest rate

a) Tests for structural changes in mean and/or variance

supLRy T UDmax LRy 1
Mmeg=1 meg=2 my=3 M=3N=2
ng =1 8.34** 4.66 7.50** 11.44***

neg =2 893 11.44**  6.54**

b) Tests for structural changes in mean

supLR3 1 UDmax LR3 1 supSeqy, T break dates
meg=1 mg=2 mg=3 M=3 Mmeg=1 mg=2 myg=3
ng =0 14.66"* 25.75"*  20.60*** 25.75%%* 27.86*** 7.63 3.33 1972:3  1980:3
ng =1 8.42% 25,75 24.08*** 25.75%** 25.82%%* 6.20 2.99 1972:3  1980:3
Ng =2 8.17* 25.71%%*F  21.57*** 25.717%* 25.48*** 6.87 3.33 1972:3  1980:3

c¢) Tests for structural changes in variance

supLRa UDmax LRy supSeqio, T break dates
Ng =1 Ng =2 N =2 Ng=1 ng=2
mg =0 30.03***  15.96*** 30.03*** 17.05%** 5.89 1972:3 1981:2
me =1 21.70""* 12.02*** 21.70%** 4.25 6.36 1972:3
me =2 16.207**  10.72*** 16.20*"** 15.29*** 6.45 1964:3 1972:3
me =3 16.42***  11.62*** 16.42%** 10.88** 6.45 1966:4 1969:3

Notes: *** and *** indicate significance at the 10%, 5% and 1% levels, respectively.
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Figure 1: Annual change of the quarterly US inflation rate: 1959:1-2018:4
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Figure 2: US ex-post real interest rate: 1961:1-1986:3



“Testing jointly for structural changes in the error variance and coefficients of
a linear regression model”
by Pierre Perron, Yohei Yamamoto and Jing Zhou

Supplementary Material

A: Proof of the statement in equation (7): Consider an AR(1) model y; = By;—1+us
in which the variance of u; has n breaks and |3| < 1. Consider the variance adjusted series
y? = Py, + uy where uf = u;/00 and y; = ogyf with og = 019, without loss of generality.
Then,

Ts Ts
T Ztl]ztzt:T Ztl]tl
Ts Ts Ts
= 1" Ztl]yt1+2T 21[51% VW —yi ) + T Zz[fl(yt 1Y 1)2-

We here show that the second and the third terms are O,(vr) and O,(v%) where vy — 0
uniformly in s. For notational simplicity, we show these results for y; and y; instead of y;_1
and gy , as the difference is negligible. First, for [TA}° ] <t < [TAY):

Ye = ZH Brupr = Zf 1(010/00)Ul,t
t— 1
Yy = Z Bluy_, = Zl 1 Ut

(A7) BTug  for 1 < kand vy, = 09> a0 J41 B uf .. These yield

>\U01]+1
* N k k 01,0 — 00
=) = Sho S (P ) o
0
OlL0—0 Ol,o— O
¥\2 11,0 0 12,0 0
(ye —y)° = le 1212 1( o ) ( >Ul1,tvl2,t
0

]

where v, = 00 )"

so that for any [ < k

[TAYO * k k Ol3,0 — [TAYO
T Zt [/Zl'*)\vO 41 yt (y yt) = Zh:l ZZQZ]. (20_—0> (T Zt [jl")\vo ]+1 vll,tvl2, >

—_——

=0p(vr) =Op(1)
= 51,1 = Op(UT)
and
[T>\v0 *\2
Zt [T)\uol]+1( yt)
k k 01,0 — 00 03,0 — [TAYO
= lezl Zl2:1 ( : o > < : oo )( Zt [jlﬂ)\vo +1 Ull7tvl27t)
:O;ZU%) *OTJ( 1)



For any | < k, T~ ZLT/[\T/\W L1 Vi 4Vt = O,(1) because vy, ; and vy, ¢ are covariance station-
ary series for any /; and [;. We can show that the same property holds uniformly in s for

| = k with a minor change of notation. Therefore, uniformly in s,

27! Z?Sl] Y (W1 —yi1) = 22?:1 S = Op(UT)
T ZtTSl](yt L —y)? = Zf:l Soy = O,(v3)

B: The choice of 1}

To address what specific version of the correction factor to use, we consider the size and
power of the sup LR} ; test under the following simple DGP with GARCH(1,1) errors:

Y = g + /,621(t > [25T]> + €, €t = Uy ht, U ~ 1.9.d. N(O, 1),
hi = 71+ 721 (t > [75T)) + ~vel | + phi_1,

with hg = 71/ (1 —~ — p) and 71 = 1. The sample size is T = 100 and ¢ = 0.20. Under
Hy, py = 72 = 0, while under H;, one break in mean and one break in variance are allowed
(g = 0 under both Hy and H;). We consider four versions for the estimate {ﬁ as defined by
(8): 1) ¢ = 2, i.e., no dependence in 7, is accounted for (labelled “no correction”), 2) using
the residuals under H; to construct the bandwidth by and to estimate the autocovariances
of n, (labelled “alternative”); 3) using the residuals under Hy instead (labelled “null”); and,
as suggested by Kejriwal (2009), 4) using a hybrid method that constructs the bandwidth by
using the residuals under H; but uses the residuals under H, to estimate the autocovariances
of n, (labelled “hybrid”). Here and elsewhere, we use 1,000 replications. The reason to
include the “no correction” option is to assess which cases (i.e., which combinations of values
for p and «y) leads to distortions when serial dependence is not accounted for and how well
the various suggested options for corrections improve the size.

The results for the exact size of the test (5% nominal size) are presented in Table S.1.
The critical values are those of the bound of the limit distribution, hence, a conservative
size is expected. The results show that the methods “no correction” and “alternative”
exhibit substantial size distortions, that increase with v and p, which indicates the extent
of the correlation in the squared residuals. The method “null”, on the other hand, shows
conservative size distortions as expected. The hybrid method shows less conservative size
distortions when v and p are not very large. These results dictate our choice of p = 0.2 and
v = 0.1,..., 0.5 in the subsequent simulations reported in the text since they imply tests that

require a correction and using either the “null” and “hybrid” methods yields test with good
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finite samples sizes. The results for power are presented in Table S.2. We only consider the
methods “null” and “hybrid” given the high size distortions of the methods “no correction”
and “alternative”. The results show that substantial power gains can be achieved using
the “hybrid” method as opposed to the “null” method, especially if the GARCH effect is
pronounced. Hence, we recommend using the “hybrid” method and all results reported in

the main text are based on it.
C: Should we always correct?

We address the issue of whether it is costly in terms of power to use a correction valid
under more general conditions than needed. To that effect we first consider the power of the

sup LR} r test under the following DGP with normal errors:
Yr = pg + pol(t > T7) + ey, e ~ id.d. N(0,1401(t > 17)),

where we set p; = 0 and p, = 6. We consider three scenarios for the timing of the breaks: a
common break in mean and variance at 77 = TV = [.57], and disjoint breaks at {77 = [.37],
1Y = [.6T]} and {7 = [.6T], T} = [.3T]}. We use T" = 100, 200 and the power, for 5%
nominal size tests, is evaluated at values of # ranging from 0.25 to 1.5 with € = 0.15. Three
versions of the sup LR} ;. tests are evaluated: 1) with a full correction based on ¢ using
the hybrid method (labelled “full”); 2) a correction valid only for i.i.d. errors, though not
necessarily normal, given by ¢ = fi,/6* — 1, where 62 = T Z;‘le 4? and i, = T7! Zthl iy
with @; the residuals under Hy (labelled “i.i.d.”); 3) no correction, i.e., using ¥ = 2, which
is the appropriate value with normal errors (labelled “NC”). The results are presented in
Table S.3. They show that the power is basically the same using any of the three methods.
Hence, there is no cost in using a full correction and we use it throughout for the results

reported in the main text.
D: Local asymptotic power functions.

We consider model (1) focusing on the case of n = m = 1 with the following assumptions.
eAssumption L1: Assumptions Al and A3 hold with o9 — 019 = o™/ VT. We also
have T2 5 [(42)2 — 1] = YW (s) with ¢ = limg_e var(T"Y2°F [(uf)2 — 1]) and
T2 (wg)2 2 s uniformly in s € [0, 1.

eAssumption L2: Assumptions A2 and A3 hold with 65 — 69 = §*/v/T.

In the following, we derive the local asymptotic power of the sup LRy and sup LR3
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tests, allowing for nuisance breaks, i.e., we consider the tests sup LRy r(n = 1,m =1,¢ln =
0,m = 1) and sup LR3p(m = 1,n = 1,e|m = 0,n = 1). The results are also valid if the
nuisance breaks are not accounted for, in which case the tests reduce to the sup LR; r and
the sup LRy test (Andrews, 1993), respectively. Without loss of generality, we denote g
by oo and 63 by &°.

Lemma S.1 Under Assumption L1 or Assumption L1 with Assumption A3 allowing for
61 =0,
sup LRar(n=1,m =1,e[n =0,m = 1) = sup,veye 6(1/}/2)[.]()\”)]2 (S.1)

where

o NW(A)=W() 20700, .,
J(A”) = SN + NG b(\Y)

)\110 # i )\’UO < )\’U
b(AY) = VoA AT .

(1 o )\UO) \Y Zf /\vO > /\fu

1-Av

In particular if 67 = 0, which is imposed in the construction of the test,
sup LRy r(n = 1,€) = supyvey, . (V/2)[T(\")]?. (S5.2)

Lemma S.2 Under Assumption L2 or Assumption L2 with Assumption A3 allowing for

olp =0,
sup LRz r(m = 1,n = 1,elm = 0,n = 1) = supyecps (A9 J(X°) (S.3)
where
AW, (1) — ¢
J()\C) — WQ( ) WQ( ) + Q1/26*b()\c)
A1 = X%
/\CO 1—3\C i /\CO < )¢
bAT) — X C fAT <
(1=X) /2 A0 > )

In particular, if 05y = 0, which is imposed in the construction of the test,
sup LRr(m = 1,¢) = supyeey, . J(A) J(X). (S.4)

Importantly, the result in (S.4) is the same as Theorem 4(c) in Andrews (1993), if we
set (in his notation) n(s) = §I(s < A\°), S = o2(T"'Z2'Z) and M = (T~'Z'Z). For
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comparisons, we also consider the cumulative sum of squares (CUS(Q) test when there are

no nuisance coefficient breaks. With 4, the OLS regression residuals, the CUSQ test is:
o |78 [T a2 - 3T i)

1<7T°<T
-1 T ~92
T 4

cUSQ =

From Deng and Perron (2008)
B v [ u? TN\ u?
e ey (S o) - B s (-0 o

0 0o

CUSQ = sup

Av€l[0,1]

and we obtain the following result.

Lemma S.3 Under Assumption L1, if there is no structural change in the coefficients, then

*
20% 0

Vo

cusqQ = \/@ sup

Ave[0,1]

W) — AW (1) + u(\Y) (S.5)

where
)\1}0(1 o )\v) Zf )\’UO S Y

() = o
AY(L— A) A0 > N

Lemma S.1 suggests that the local asymptotic power of the sup LR, r test coincides with
that of the sup LR, r test except for the fact that the set of permissible break dates Af_
becomes smaller than A,.. Lemma S.2 suggests that the local asymptotic power of the
sup LR r test coincides with that of the standard sup LRy test derived in Theorem 4 of
Andrews (1993) except that the set of permissible break dates Ay, is in general smaller than
A. .. Hence, when testing for changes in variance allowing for changes in coeflicients, we have
the same local asymptotic power function as when testing for changes in variance when no
change in coefficient is present and none is allowed for. Therefore, we incur no loss in local
asymptotic power by adopting our more general approach.

We next compare the local asymptotic power functions of the sup LR 1 test given by
(S.2), the sup LRy 7 test given by (S.1) and the CUSQ test given by (S.5) via Monte Carlo
simulations. To this end, the Wiener processes W (-) are approximated by the partial sums
of i.i.d. standard normal random variables with 5,000 discrete steps. The power functions
of 5% nominal size tests are computed based on 10,000 Monte Carlo replications with the
value of ¢* ranging from 0 to 10. We also set the trimming ¢ = 0.15, ¥» = 2 and o9 = 1,
although these particular choices do not qualitatively affect the results. We use the critical
values of 8.58 for the sup LR, r and sup LRy 1 tests and V2 % 1.358 for the CUSQ test.
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Figure S.1 shows the asymptotic local power functions of the sup LR, test and the
CUSQ test when a break in variance occurs at A”° = 0.3, 0.5 and 0.7 and no break occurs
in the coefficients. They show the local asymptotic power functions to be almost identical.
Figure S.2 presents the local asymptotic power functions of the sup LR, test when it ac-
counts for a coefficient break at A = 0.3, 0.5 or 0.7. It also shows, the local asymptotic
power functions of the CUS(Q test under the (correct) assumption of no break in the coeffi-
cients. Hence, this simulation design gives an advantage to the CUS() test and some power
loss for the sup LRy test might be expected. Indeed, the power of the sup LRy p test is
slightly lower when the variance and the coefficient break dates coincide. This is because
the permissible break dates around the true break date are not considered due to the con-
current nuisance break. However, the power loss of the sup LRy test is very minor even
though the sup LRy test allows for a coefficient break. The power functions of both tests
are almost identical when the two breaks are far apart. i.e., the case of (\*?, \*) = (0.3,0.7)
and (0.7,0.3).

Proof of Lemma S.1 The sup LR, p test is:

sup LRy = 2[log L (T T") — log Ly (T°)]
= Tlogd> — (T —T")log 62 — T" log 62
where 5% = T! Zthl(yt — xfﬁ — zﬁt,j) , 65 = (T — T”) ZtT:fUH(yt —zf - z{gtﬁj)Q and
= Tv-! Zt " (g — @3 — 26,;)?. Applying a Taylor expansion to log >, log 6% and log &

around log 03 (without loss of generality, let 02 = 03,), we obtain

sup LRy = (Fir + For) + 0p(1)

where
Fir = (62)7YT6* — (T —T")6% — T'67]
Tv
= @D [ — B — 285 — (e — w5 — 81)?]
t=1
T ~ ~
FER) DD |- @B = #8u) (- @B — 211
t=T7+1
and

1
= —(—1I-1).



We first show that Fyr = o0,(1). From Assumption Al, for any partition TY, we have
X!X; = O,(T), Z!Z; = O,(T), X!Z; = O,(T), X|U; = O,(T"?) and Z\U; = O,(T*/?)
for i = 1 and 2. In addition, under Assumptions Al and A3 in which the change in the
coefficient is assumed to shrink at rate vy, we obtain S—3 = O,(T~/2), 6? —6; = 0,(T~1/?),
B—08=o0,(T72) and §; — 6; = 0,(T~Y/2) for j = 1 and 2. Hence, Fy 1 = o, (1) is shown
by directly following the proof of Theorem 1(b). If there is no break in the coefficient
(8% = 69), we also obtain § — 3 = O,(T~/2), 8 — §; = 0,(T?), B — B = 0,(T"/?) and
§;—6; = 0,(T™Y/2) for j = 1 and 2 no matter where 7° is. Hence, Fy 7 = o, (1).

For F; 1, we slightly change the notation and express the change in variance as 00— o029 =
(0% o90) /T for i = 1,2. We also denote a9 by ¢ without loss of generality so that o%* = 0

by construction. Then,

o7* oo
00 — 00
VT
o7, (o7 /o0)? L o
o} = a§+2ﬁ+ T —00(1+2ﬁ+O(T 1))
or 1 1 .
o
— = (1422 orYH). S.6
2 0?0(+\/T+( >> (5.6)

For each of the three terms, we have

VI = T2 ET: [(yt - zfﬁ — Zigt,j)Z _ 1]

2

t=1 90
1/2 d Uf
= T (Z =)+ o)
t=1 0
T u? T u
= T2 7! 207 I(t < T 1
le( N 3 5z )21 ) + 0p(1)
= \/_ ( ) )\vO o
~ N\ —1/2 T )

= T2 Z(o—_g —1) -T2 Z(U—% —1) p +0,(1)




T 9 T 2
— u ok V) — kok V!
+71 EI(—;)al It<T%v 71 ;:1 (0—250)2 I <T) 5 +0,(1)
W) —W(AY) A —min{\"° A"}
= + 2077,
Vi I\ I\ 71

~ 0\ ~1/2 ™
VIIT = (T—> T2 Z(“—g —1) p +o0,(1)

o
t=1 0

o ~1/2 oo T
= (Z) e e Y (et n < 1) b+ o)
T =1 70 =1 0
W(AY)  min{A*’, A"}
= + 207"
Vi =2

Therefore,
2
Y () W(A“) 2 piy
where

b()\v) )\110 [ 1=XY )\” if )\vO S \Y
|« —A”O)./lf’;v DU

This yields
@Z) v\12
supLRer = sup —[J(\)]
AeAs, 2
AW () —W(N) 207

JOY) = ) +ﬁb(k”)

b(}\v) )\1}0 /1;5\” lf )\1}0 S )\v
I B R YT T U U

The results for the sup LR, 7 follow because F 1 = 0,(1) holds also when there is no break

in the coefficients.
Proof of Lemma S.2. The sup LR3 1 test is:

sup LRs 1 = 2[log L (T T") —log L (T")]
= (T —1T")logd2+T"logd? — (T —T")log 62 — T" log &°
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” T > ~ TN — Tv A
where o 02 (T — T ) Zt:fv+1(yt -z — Zt6)27 U% = (71) ! Zt:l(yt xtﬁ — 2 )2> 2 =
(T —=T") 7 Xy (e — 248 — 2jb0,)? and &% = (T°) 7 2207, (e — 28 — 2j6.,1). Applying a
Taylor expansion to log 75 and log &% around log 0%,, and to log 7> and log & around log o3,

sup LR37T = (FI,T + FQ’T) + 0p<].) (S?)
where Ly " Ly e
o
Fip=(T—-T")22% — (T —T") 22 4+ v 2L _ v 2L
O30 020 T 010
and

O30 O30

~2 2 \ 2 ~9 9\ 2
_1 7o <‘71_‘710) _ v <‘71_‘710)
2 2 :
2 010 010

We first show that Fyr = 0, (1). We have

1 . 52— o2 2 ~ 62— g2 \?
F2,T — _5 (T_Tv)( 2 > 20) _(T_Tv>( 2 - 20)]

117 —1v 2 —a2\1> T-T" 52— 02\’
F - __ T 2 20 . T 2 20

. 2 T {\/_< o3 )} T {\/_ o3
2

1 _T” 52— o2 v 52 — o2 2
B A DY i R Y B 91~ %10
()] - (U

where (T —T°)/T|[VT (52 — 0%,) /02, and [(T — T”)/TL[\/T(&% — 03y) /03] have the same
limit distribution and (7% /T)[VT (5> — 02,)/0%,)? and (T°/T)[VT (6% — 0%,)/02,)? have the

same limit distribution under Assumption A3. These also hold when there is no break in

the variance. For F} r, let 0y = 099 without loss of generality, then

P = (o) [(T — T3 — (T = T")63 + T°5; — T"67
2

(010 =08\ w2 s
o () (15t - 7o)

010

The first term becomes,

T Te T
(00) D (=2l B— 20 =D (e — B — 26" — > (e — 1B — 2b;41)°
t=1 t=1 t=Tei1

= (09)7'[D" = D"(2) — D*(1)]
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and the second term is 0,(1) under Assumption A3. When there is no break in variance, the

second term is zero because 03, — 02 = 03, — 03, = 0. Then,
D" — D*(2) — D (1)
= TS e + 1< T8 5| (TS %)
w |72 S (2w + 228" I (t < TCO))_
+ 712 Zt Clugzl I < TCO)6*’ztz£)_ (T Zt ) ztzt>
< [T V2T (g + 226" 1( < T))]
4 [ ZtT:ch(utZé + I(t < Tco)é*'ztzg)} (T_1 ZtT:TcH ztz£>

x |12 S ey (e + 228" (t < TCO))] (1)
=TT

where

cy )\CWq(l) — WCI()\C) 1/2 cx c
J(\) = ( T >+Q 6"b(X%)

)\CO 1-)\°¢ if )\CO S )\c

(1=X0) /2 A >

b(A) =

and Q = plimp_(T7! Zthl z12;). Hence, from (S.7) the results of the sup LR3 test is
obtained. The result for the the sup LRy is also obtained since we showed Fpr = 0,(1) to

hold when there is no variance break.
Proof of Lemma S.3. By (S.6), we obtain

J?O/Ug =1+ 203*/\/?—4— O(T_l)

and the test statistic CUSQ is such that:

2
CcUS _ SU. T_l/2|: [T)\” ( i 20 . ) [ ] (_t_l[)_ ):H_I_O 1
Q Opl] ‘710 00 Zt 1 010 ‘70 p( )
= su 1/2{ { <1+2 **It<T”0)—1}
Opl] VT (t< )

0
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= sup

v 2 T)\U] U2
el () 5 ()
e [071] t=1 0_120 T thl 0_220

» 2 T)\v 2
+ 71 { Ql 1 (:—;) 207 1(t < T) — [ = ] zle <“—;) 207 I (t < T”O)] ‘ + 0,(1)

i0 050

W) — N (L] + %’“u(m

= Y sup
Av€0,1]

where
A1 =A%) i A0 <N

p(\’) = . .
AY(1 = A"0) HE AT > N

E: Robustness to non-normal errors.

Given that our tests are based on a quasi-likelihood framework assuming normal errors,
it is useful to assess their size and power under non-normal error distributions. We focus
on the tests for the structural changes in variance, i.e. the sup LR, and sup LRy 7 tests,
mostly because these are the most prone to be affected by non-normality; e.g., the test for a
single coefficient break coincides with that derived by Andrews (1993) using a GMM-based
approach. To investigate the sup LR, r test, we generate the same data as the experiment

pertaining to Table 2:

Y = ctay_te, e=un/h
he = 71+ 71I(t > [5T)) +~ve | + phi_1,

where hg = 71/ (1 — v — p) and u; is drawn from the following well-known non-normal dis-
tributions: (a) the ¢ distribution with 5 degrees of freedom (¢5), (b) a mixture of two normal
distributions: v11(z < 0.5)+wvI(z > 0.5), where z ~ U|[0,1], v; ~ N(—1,1) and vy ~ N(1,1)
(c) the x? distribution with 5 degrees of freedom and (d) an exponential distribution — In(v),
v ~ U|0,1]. These distributions were chosen as empirically relevant examples following Bai
and Ng (2005). To facilitate comparisons, the errors are normalized by subtracting the sam-
ple mean and dividing by the sample standard deviation of each Monte Carlo repetition.
The model parameter values are set at ¢ = 0.5,7; = 0.1, p = 0.2, and € = 0.15. We consider
a = 0.2,0.7 and v = 0.1,0.3,0.5. The sample size is T" = 100, 200. Table S.4 presents the
exact size and power of the sup LR, r, UD max; p and CUSQ tests. The reported values are
roughly comparable to those with normal errors in Table 2, i.e., little if any size distortions.

In all cases, the power decreases to some extent. Note, however, that this is also the case for
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the CUSQ test and the relative advantage of the sup LR, v and UD max; r tests over the
CUSQ test remains under these non-normal errors.
For the sup LR,y r test, we use the same data generating process as that corresponding

to Table 4 to assess the size, i.e.,
Yo = 1y + Lt > [0.5T)) + e, (S.8)

with e; drawn from one of the four types of non-normal distributions. Again, the errors are
standardized to have mean zero and variance one in each Monte Carlo repetition. We set
i, = 0 and the truncation ¢ = 0.15, although we obtained similar results for other choices
of €. Table S.5 shows that the size distortions are minor in all cases. To assess the power
of the sup LRy 1 test, we use again DGP (S.8). The errors are standardized to have mean
zero and variance one when ¢t < [0.257] and 1 + 6 when t > [0.257] so that 6 indicates the
magnitude of the break. The results are presented in Table S.6. Relative to the results in
Table 5, we have, as expected, some power reductions. The extent of the power losses vary

across the different distributions. Nevertheless, the test remains informative.

F: Size and Power of the sup LR] 1 test in the case of normal errors.

Table 5.7 presents results related to Table 2 for the statistic sup LR} r when testing for
a single break in variance assuming no break in regression coefficients but with the static
model and normal errors. The DGP is y; = e; with e; ~ ©.i.d.N(0,1 + 0I(t > [.57]) and 0
varies between 0 and 1.5. The trimming parameter is set to ¢ = 0.15. The results show that
using {ﬁ with the full correction yields power and exact size similar to tests with a correction
that correctly assumes i.i.d. errors, though here imposing normality can lead to tests with
somewhat higher power. This confirms that using the full correction entails little power loss
or size distortions.

We also investigate the findings that the UD max LR, r test can have power close to that
of sup LR} 7 under a single break model even though the former considers a wider range of
alternatives by using a simple design with normal errors. We also compare them with the
CUSQ test described in the main text. We use the same DGP and the results are presented
in Table S.8. They show the exact sizes of the sup LR} 7 and UD max LR, r tests to be close
to the nominal 5% size. The CUSQ test is slightly undersized. The power functions of the

three tests are very close.
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G: Size of the sup LR} and UD max tests in the case of normal errors.

We present results about the size properties of the sup LR} ; and UD max tests with
normal i.i.d. errors, with the DGP set to y; = e; ~ i.i.d. N(0,1). We use three values of the
trimming parameter ¢ = 0.1,0.15 and 0.2. For the UD max test, M = N = 2 and for the
sup LR} 1 test, we consider the following combinations: a) Mg =ng =1,b) my =1, n, = 2,
c) mg = 2, n, = 1. Two sample sizes are used, T' = 100, 200. The results are presented in
Table S.9 and they show the size to be slightly conservative, as expected since the critical
values are from a limit distribution that provides an upper bound. Nevertheless, the size is

close to the nominal 5% level in every case.

H: Split-sample method to select the number of breaks.

We present results for a split-sample method to estimate the number of breaks in 6 and
o%. Tt is based on a specific to general sequential procedure which is a modification of the
sequential procedure discussed in Qu and Perron (2007). Our problem is, however, more
complex since we wish to ascertain what types of break occur at any given selected break
date, not only to know whether some kind of break did occur. Hence, the need for some
refinements. The starting point is to consider the testing problem for the number of breaks
in the union of the coefficients and variance breaks K. This is implemented by using the
Seqr(l + 1|1) test proposed by Qu and Perron (2007). The next step is to decide whether
a break in coefficients, in variance or in both has occurred at each of the selected break
dates. We then perform standard hypothesis testing for the equality of the parameters
across adjacent segments. Since the limit distribution of the estimates of the parameters
of the model are the same whether using estimates of the break dates or their true value,
standard procedures can be applied. Consider first the case of testing whether the regression
coefficients are equal across the two regimes (Tk_l, Tk), regime k, and (Tk, Tk+1), regime k+1,
separated by the k" break (k = 1, ..., K). Denote the true value of the regression coefficients
in regimes k and k£ + 1 by ¢, and 6.1, respectively. The null and alternative hypotheses are
Hy : 6 = Opy1 and Hy : 63 # Op+1. Note that since there is a break in § and/or o2, under
Hy there must be a change in ¢®. Hence, the test to be applied is a standard Chow-type test
allowing for a change in variance across regimes (see Goldfeld and Quandt, 1978). Consider

now the testing problem Hy : 0} = o3, versus H; : 0} # 0t,,, where o} and o, are the
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error variances in regimes k£ and k + 1, respectively. The Wald test is

T — Ti)(Topr — Ti) . )
w, = ST =00 g gy
(Ths1 = Tho—1)(frg — 67)

where 67 and &} +1 are the MLE of o7 and o7, (constructed allowing 6 to be different

in regimes k and k + 1), and ji, is a consistent estimate of E(ul), e.g., iy = (Thp1 —
Tho1) ! Z;:fh | i, constructed under H; to maximize power. The simulation design is the
same as stated in Section 6. The results for this split-sample approach are presented in Table
S.10. Of note, there are cases for which the probability of making the correct selection is
quite low; e.g., when both changes in mean and variance are not large and occur at different
dates, especially when they are far apart. The basic reason for that is that the sequential
test of Qu and Perron (2007) jointly tests whether a break in both regression coefficients and
variance occur. Hence, if only one type of break occurs the power can be quite low unless
the magnitudes of the breaks are large. Unfortunately, this situation is expected to be quite
common in practice (see, Perron and Yamamoto, 2019). Hence, though this procedure is
valid in large samples, it should not be applied mechanically. Care must be exercised to

assess whether we are in a situation where its finite sample properties are rather poor.
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Table S.1: Size of the sup LR 1 using different estimates of ¢ in the case of GARCH(1,1) errors
(DGP: y; = e, er = ugv/hy, with uy ~i.i.d. N(0,1), hy = 71 +ve?_; + phi—1, ho =71/ (1 — v — p),
71 =1, T =100, ¢ = 0.20, Alternative hypothesis: m, = 1,n, = 1).

no correction alternative
Y\p | 0.0 0.1 0.2 0.3 0.4 0.5 Y\p | 0.0 0.1 0.2 0.3 0.4 0.5
0.1 | 0.045 | 0.049 | 0.053 | 0.056 | 0.064 | 0.067 0.1 | 0.063 | 0.066 | 0.076 | 0.062 | 0.079 | 0.104
0.2 | 0.087 | 0.089 | 0.119 | 0.113 | 0.137 | 0.172 0.2 | 0.076 | 0.095 | 0.113 | 0.111 | 0.146 | 0.158
0.3 | 0.138 | 0.147 | 0.171 | 0.219 | 0.308 | 0.354 0.3 | 0.103 | 0.114 | 0.147 | 0.147 | 0.218 | 0.279
0.4 | 0.187 | 0.249 | 0.318 | 0.351 | 0.431 | 0.554 0.4 | 0.112 | 0.139 | 0.187 | 0.187 | 0.289 | 0.382
0.5 | 0.280 | 0.336 | 0.407 | 0.479 | 0.593 - 0.5 | 0.142 | 0.172 | 0.233 | 0.233 | 0.360 -

null hybrid
Y\p | 0.0 0.1 0.2 0.3 0.4 0.5 Y\p | 00 0.1 0.2 0.3 0.4 0.5
0.1 | 0.032 | 0.032 | 0.034 | 0.027 | 0.038 | 0.032 0.1 | 0.038 | 0.035 | 0.037 | 0.035 | 0.054 | 0.055
0.2 | 0.031 | 0.033 | 0.037 | 0.039 | 0.052 | 0.052 0.2 | 0.036 | 0.041 | 0.054 | 0.052 | 0.059 | 0.084
0.3 | 0.035 | 0.022 | 0.030 | 0.046 | 0.045 | 0.077 0.3 | 0.040 | 0.041 | 0.041 | 0.063 | 0.091 | 0.116
0.4 | 0.025 | 0.031 | 0.039 | 0.047 | 0.051 | 0.112 0.4 | 0.036 | 0.041 | 0.062 | 0.069 | 0.094 | 0.166
0.5 | 0.028 | 0.031 | 0.036 | 0.054 | 0.092 - 0.5 | 0.033 | 0.047 | 0.065 | 0.091 | 0.122 -

Note: "no correction" specifies ¢ = 2; "alternative" specifies that the unrestricted residuals are used to

construct 121 and bp; "null" specifies that the residuals imposing the null hypothesis are used to construct

12) and by, and "hybrid" specifies that the residuals under the alternative are used to construct by and the

residuals under the null hypothesis are used to construct 12)

Table S.2: Power of the sup LR] 1 using different estimates of ¢ in the case of GARCH(1) errors
(DGP Yt = HUq + /Lzl(t > [025T]) + €y, € = Ut\/E, with U ~ i.i.d. N(O, 1),

ht =T1 +’7’21 (t > [075T]) +’7€%71 +pht71, ho = 7'1/(]. i p), T1 = ]., p = 027 T = 100, g = 020)
a) small change in variance, large change in mean

v=0.1 v=10.3 v=0.5
null hybrid null hybrid null hybrid
MQ\TQ 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5
0.5 0.201  0.222 | 0.206 0.250 | 0.148 0.183 | 0.173 0.197 | 0.112 0.102 | 0.147 0.150
1 0.714 0.705 | 0.719 0.711 | 0.534 0.565 | 0.559 0.588 | 0.399 0.385 | 0.417 0.391
1.5 0.977 0979 | 0.978 0.980 | 0.911 0.893 | 0.919 0.901 | 0.752 0.740 | 0.760  0.757
2 1.000 1.000 | 1.000 1.000 | 0.992 0.997 | 0.991 0.995 | 0.944 0.928 | 0.952 0.923
b) small change in mean, large change in variance
v=0.1 v=10.3 v=0.5
null hybrid null hybrid null hybrid
TQ\,LLQ 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5
1 0.168 0.287 | 0.208 0.329 | 0.115 0.219 | 0.152 0.259 | 0.087 0.143 | 0.130 0.178
3 0.441 0.554 | 0.609 0.664 | 0.235 0.359 | 0.373 0.475 | 0.159 0.230 | 0.241 0.295
5 0.586  0.660 | 0.770 0.843 | 0.367 0.428 | 0.548 0.594 | 0.255 0.286 | 0.364 0.410
7 0.641 0.732 | 0.851 0.893 | 0.453 0.499 | 0.653 0.664 | 0.311 0.384 | 0.445 0.487

Note: "null" specifies that the residuals imposing the null hypothesis are used to construct 121 and bp, and

"hybrid" specifies that the residuals under the alternative are used to construct by and the residuals under

the null hypothesis are used to construct 12;



Table S.3: Power of the sup LR] 1 test using different corrections in the case of normal errors

(DGP: yp = pq + pol(t > T7) + €45 e ~ ddd. N(0,1+01(t > T7)), g =0, py =60, =0.15)
T =100

Ti=T7= [.5T] Ti=[.3T), TY= [.6T] | TY=[.6T), TY=[.3T]

6 | full iid. NC | full iid. NC full iid. NC

0 0.040 0.032 0.029 | 0.040 0.032 0.029 0.040  0.032  0.029
0.25 | 0.120 0.115 0.118 | 0.108 0.104 0.102 0.106  0.106  0.101
0.5 0.370  0.371  0.370 | 0.325 0.323  0.328 0.327  0.334 0.330
0.75 | 0.736  0.727  0.751 | 0.692 0.689 0.706 0.649 0.647 0.668

1 0.937 0.938 0.941 | 0.919 0.925 0.936 0.871  0.869 0.877
1.25 | 0.992  0.992 0.990 | 0.990 0.990 0.991 0.976  0.980 0.978
1.5 1.000 0.999 0.999 | 1.000 1.000 1.000 0.991  0.994 0.993

T =200

T=Ti=[5T] | T¢=[.3T], TY=[.61] | T¢= [.6T], Ty = [.3T]
9 | ful iid. NC | ful iid. NC | full 1iid. NC

0 0.035 0.036 0.033 | 0.035 0.036 0.033 0.035 0.036  0.033
0.25 | 0.227 0.228 0.237 | 0.168 0.177 0.185 0.199  0.207 0.217
0.5 0.746  0.7568 0.764 | 0.709 0.712 0.712 0.678 0.676 0.673
0.75 | 0.989 0.987 0.991 | 0.984 0.982 0.982 0.961  0.963 0.964

1 1.000 0.999 1.000 | 1.000 1.000 1.000 0.997  0.997  0.998
1.25 | 1.000 1.000 1.000 | 1.000 1.000  1.000 1.000 1.000 1.000
1.5 1.000  1.000  1.000 | 1.000 1.000  1.000 1.000  1.000  1.000

Note: The nominal size is 5% and 1,000 replications are used. The column "full" refers the test using the
correction ¥ which allows for non-normal, conditionally heteroskesdatic and serially correlated errors, as
"

defined by (8); the column "i.i.d.
PN PN ~2 -1 T 2 P o | T 4 . ~ .
P = u4/0' — 1, where 6° =T Zt:l uy and iy =T Zt:l Uy with Uy the residuals under the

refers to a correction that only allows for i.i.d. non-normal errors, i.e.,

null hypotheses; the column “NC” applies no correction and sets ¥ = 2, which is valid with normal errors.



Table S.4: Size and power of the supLR; r(n, = 1,¢), UDmax LRy r and CUSQ tests in a dynamic model with GARCH(1,1) errors
(a) t5 distribution

T =100
a=0.2 a=0.7
v=0.1 v=0.3 v=0.5 v=0.1 v=0.3 v=0.5
T2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ
0 0.041 0.039 0.026 | 0.064 0.064 0.025 | 0.094 0.090 0.029 [ 0.046 0.038 0.023 | 0.065 0.062 0.028 | 0.091 0.085 0.031
0.05 | 0.094 0.090 0.068 | 0.101 0.098 0.053 | 0.108 0.106 0.047 [ 0.089 0.079 0.064 | 0.088 0.093 0.047 | 0.104 0.103 0.037
0.1 0.203 0.190 0.182 | 0.184 0.187 0.137 | 0.178 0.179 0.102 | 0.194 0.189 0.180 | 0.188 0.187 0.130 | 0.169 0.175 0.096
0.15 | 0.327 0.303 0.273 | 0.273 0.262 0.193 | 0.232 0.218 0.134 | 0.310 0.290 0.277 | 0.264 0.251 0.198 | 0.233 0.226 0.134
0.2 | 0.435 0.415 0.390 | 0.372 0.364 0.268 | 0.300 0.296 0.183 | 0.431 0.410 0.385 | 0.366 0.357 0.258 | 0.306 0.291 0.181
0.3 | 0.620 0.600 0.530 | 0.501 0.490 0.385 | 0.407 0.399 0.259 | 0.615 0.594 0.524 | 0.494 0.479 0.386 | 0.394 0.380 0.259
T =200
a=0.2 a=0.7
v=0.1 v=0.3 v=10.5 v=0.1 v=0.3 v=20.5
T2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ
0 0.041 0.039 0.027 | 0.054 0.054 0.036 | 0.057 0.052 0.040 | 0.042 0.035 0.029 | 0.051 0.052 0.038 | 0.053 0.048 0.039
0.05 | 0.129 0.123 0.136 | 0.113 0.104 0.101 0.089 0.085 0.073 | 0.127 0.121 0.142 | 0.108 0.102 0.103 | 0.086 0.081 0.068
0.1 0.358 0.340 0.369 | 0.279 0.262 0.258 | 0.229 0.207 0.169 | 0.367 0.347 0.375 | 0.275 0.248 0.254 | 0.213 0.194 0.169
0.15 | 0.560 0.536 0.565 | 0.420 0.403 0.388 | 0.294 0.279 0.257 | 0.557 0.535 0.563 | 0.403 0.387 0.383 | 0.290 0.269 0.250
0.2 | 0.718 0.705 0.712 | 0.551 0.533 0.523 | 0.397 0.380 0.320 | 0.707 0.690 0.708 | 0.543 0.521 0.519 | 0.387 0.379 0.309
0.3 | 0.845 0.837 0.825 | 0.700 0.685 0.636 | 0.519 0.507 0.435 | 0.844 0.832 0.827 | 0.696 0.682 0.636 | 0.512 0.490 0.431




(b) mixture of normal distributions

T =100
a=0.2 a=0.7
v=0.1 v=0.3 v=0.5 v=0.1 v=0.3 v=20.5
To LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ
0 0.102 0.105 0.037 0.107 0.117 0.041 0.110 0.121 0.042 0.067 0.062 0.026 0.109 0.109 0.036 0.112 0.119 0.049
0.05 | 0.184 0.186 0.128 0.141 0.156 0.085 0.143 0.157 0.086 0.213 0.207 0.188 0.191 0.184 0.135 0.145 0.151 0.082
0.1 0.350 0.343 0.268 0.241 0.255 0.146 0.231 0.246 0.135 0.477 0.462 0.452 0.349 0.335 0.265 0.224 0.236 0.142
0.15 | 0.522 0.509 0.429 0.335 0.325 0.216 0.329 0.323 0.218 0.714 0.695 0.703 0.510 0.493 0.418 0.320 0.309 0.211
0.2 0.639 0.632 0.552 0.428 0.430 0.285 0.439 0.446 0.287 0.851 0.840 0.828 0.637 0.628 0.533 0.423 0.413 0.273
0.3 0.785 0.769 0.677 0.581 0.573 0.389 0.555 0.544 0.386 0.949 0.939 0.906 0.783 0.763 0.664 0.558 0.546 0.393
T =200
a=0.2 a=0.7
v=0.1 v=0.3 v=10.5 v=0.1 v=0.3 v=0.5
T2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ
0 0.059 0.062 0.037 0.065 0.068 0.042 0.051 0.050 0.043 0.059 0.058 0.029 0.063 0.067 0.040 0.051 0.049 0.041
0.05 | 0.373 0.359 0.411 0.243 0.236 0.241 0.143 0.137 0.126 0.364 0.348 0.408 0.241 0.231 0.236 0.141 0.132 0.116
0.1 0.831 0.822 0.848 0.556 0.543 0.566 0.307 0.292 0.272 0.827 0.815 0.848 0.548 0.538 0.558 0.296 0.286 0.265
0.15 | 0.968 0.962 0.973 0.758 0.750 0.761 0.455 0.441 0.399 0.965 0.960 0.974 0.754 0.744 0.747 0.438 0.426 0.389
0.2 0.995 0.995 0.996 0.867 0.864 0.864 0.584 0.575 0.528 0.996 0.996 0.995 0.869 0.863 0.868 0.577 0.567 0.527
0.3 1.000 1.000 0.999 0.954 0.948 0.930 0.726 0.702 0.634 1.000 1.000 0.999 0.951 0.944 0.923 0.703 0.690 0.629




(c) x2 distribution

T =100
a=0.2 a=0.7
v=0.1 v=0.3 v=0.5 v=0.1 v=0.3 v=20.5
To LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ
0 0.024 0.025 0.015 0.054 0.050 0.029 0.087 0.092 0.041 0.025 0.025 0.015 0.051 0.048 0.026 0.081 0.087 0.044
0.05 | 0.085 0.080 0.068 0.095 0.092 0.059 0.111 0.116 0.055 0.083 0.073 0.069 0.091 0.088 0.058 0.101 0.112 0.050
0.1 0.191 0.178 0.169 0.188 0.177 0.130 0.170 0.176 0.099 0.195 0.187 0.159 0.180 0.182 0.135 0.169 0.170 0.092
0.15 | 0.359 0.329 0.309 0.307 0.293 0.227 0.260 0.254 0.153 0.356 0.329 0.304 0.302 0.282 0.223 0.251 0.259 0.153
0.2 0.510 0.490 0.448 0.427 0.414 0.333 0.334 0.324 0.213 0.509 0.487 0.443 0.408 0.391 0.315 0.320 0.321 0.208
0.3 0.637 0.614 0.573 0.548 0.536 0.416 0.434 0.432 0.284 0.628 0.616 0.559 0.543 0.522 0.407 0.426 0.409 0.280
T =200
a=0.2 a=0.7
v=0.1 v=0.3 v=0.5 v=0.1 v=0.3 v=0.5
T2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ
0 0.031 0.028 0.025 0.044 0.041 0.031 0.053 0.053 0.042 0.032 0.032 0.029 0.044 0.043 0.035 0.050 0.050 0.049
0.05 | 0.140 0.134 0.133 0.136 0.124 0.116 0.118 0.109 0.085 0.138 0.129 0.135 0.130 0.124 0.107 0.109 0.102 0.084
0.1 0.388 0.366 0.415 0.282 0.259 0.260 0.196 0.182 0.145 0.370 0.348 0.384 0.270 0.247 0.261 0.187 0.178 0.157
0.15 | 0.623 0.603 0.633 0.478 0.455 0.438 0.333 0.326 0.260 0.645 0.623 0.650 0.466 0.447 0.429 0.325 0.310 0.256
0.2 0.781 0.761 0.790 0.601 0.593 0.576 0.415 0.404 0.329 0.765 0.744 0.766 0.592 0.581 0.560 0.408 0.393 0.326
0.3 0.926 0.915 0.911 0.786 0.775 0.732 0.589 0.573 0.493 0.911 0.901 0.895 0.785 0.766 0.734 0.575 0.564 0.470




(d) exponential distribution

T =100
a=0.2 a=0.7
v=0.1 v=0.3 v=0.5 v=0.1 v=0.3 v=20.5
To LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ
0 0.032 0.029 0.018 0.047 0.044 0.028 0.062 0.066 0.032 0.034 0.029 0.018 0.042 0.039 0.024 0.057 0.058 0.028
0.05 | 0.067 0.061 0.051 0.093 0.088 0.056 0.110 0.110 0.060 0.069 0.062 0.046 0.097 0.092 0.063 0.114 0.116 0.058
0.1 0.129 0.117 0.075 0.140 0.132 0.081 0.148 0.143 0.073 0.122 0.118 0.070 0.121 0.120 0.077 0.137 0.134 0.070
0.15 | 0.218 0.200 0.153 0.215 0.203 0.138 0.227 0.212 0.118 0.220 0.202 0.157 0.211 0.199 0.137 0.209 0.198 0.110
0.2 0.274 0.257 0.198 0.259 0.255 0.161 0.254 0.250 0.139 0.275 0.255 0.209 0.262 0.250 0.165 0.249 0.240 0.128
0.3 0.445 0.419 0.334 0.407 0.393 0.259 0.374 0.363 0.231 0.440 0.409 0.328 0.386 0.372 0.249 0.355 0.340 0.215
T =200
a=0.2 a=0.7
v=0.1 v=0.3 v=0.5 v=0.1 v=0.3 v=0.5
T2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ
0 0.029 0.025 0.025 0.044 0.041 0.036 0.058 0.055 0.036 0.031 0.024 0.026 0.040 0.039 0.034 0.050 0.046 0.034
0.05 | 0.099 0.090 0.089 0.098 0.089 0.083 0.114 0.104 0.083 0.091 0.082 0.090 0.094 0.084 0.080 0.105 0.095 0.081
0.1 0.232 0.214 0.226 0.202 0.188 0.178 0.188 0.177 0.135 0.232 0.215 0.228 0.202 0.184 0.178 0.185 0.173 0.131
0.15 | 0.364 0.350 0.355 0.307 0.303 0.262 0.267 0.252 0.201 0.370 0.348 0.347 0.307 0.291 0.261 0.254 0.240 0.194
0.2 0.539 0.517 0.512 0.452 0.437 0.409 0.380 0.360 0.291 0.537 0.508 0.515 0.444 0.428 0.395 0.358 0.341 0.281
0.3 0.717 0.701 0.676 0.593 0.584 0.525 0.478 0.469 0.365 0.717 0.699 0.667 0.583 0.579 0.523 0.465 0.453 0.366




Table S.5: Size of the sup LRj 1(m, = 1,1, = 1,¢ln = 0,m, = 1) test under non-normal errors
(¢ = 0.15)

T =100 T =200

Po | (a) () (©) (d) (a) (b) (c) (d)
0 0.020 0.039 0.033 0.047 | 0.021 0.031 0.039 0.042
0.1 0.021  0.035 0.036 0.031 | 0.024 0.030 0.032 0.035

0.25 | 0.014 0.040 0.029 0.039 | 0.021 0.034 0.034 0.027
0.5 0.024 0.040 0.032 0.033 | 0.015 0.032 0.031 0.032

0.75 | 0.031 0.039 0.027 0.033 | 0.013 0.029 0.027 0.024
1 0.029 0.027 0.026 0.033 | 0.015 0.039 0.030 0.026
2 0.016 0.027 0.014 0.030 | 0.022 0.033 0.030 0.018
4 0.025 0.027 0.018 0.032 | 0.020 0.028 0.021 0.031
10 0.022 0.033 0.020 0.024 | 0.022 0.040 0.016 0.023
20 0.020 0.039 0.017 0.026 | 0.029 0.025 0.023 0.029

Note: (a) the ¢5 distribution, (b) the mixture of normal distributions,

(c) the X% distribution., (d) the exponential distribution.



Table S.6: Power of the sup LR35 7(mq = 1,n4 = 1,€[n = 0,m, = 1) test under non-normal errors

(e=0.1)
T =100
(a) t5 distribution (b) mixture of normal distributions
O\py | 0 0.1 05 2 1 10 20 0 0.1 05 2 1 10 20

0.25 0.028 0.034 0.027 0.034 0.033 0.029 0.025 | 0.073 0.063 0.049 0.060 0.059 0.089 0.080
0.5 0.039 0.043 0.040 0.055 0.037 0.054 0.047 | 0.117 0.121 0.111 0.137 0.117 0.124 0.155
0.75 0.063 0.065 0.077 0.064 0.079 0.072 0.069 | 0.196 0.202 0.200 0.210 0.213 0.249 0.258
1 0.075 0.107 0.091 0.120 0.112 0.106 0.107 | 0.334 0.295 0.278 0.304 0.326 0.320 0.323
1.25 0.132  0.135 0.147 0.161  0.159 0.125 0.135 | 0.418 0.393 0.402 0.434 0.460 0.474 0.450
1.5 0.18 0.168 0.193 0.159 0.200 0.199 0.188 | 0.510 0.489 0.473 0.479 0.553 0.541 0.586
2 0.259 0.245 0.252 0.305 0.297 0.297 0.281 | 0.668 0.677 0.667 0.701 0.722 0.750 0.771
3 0.395 0.407 0.389 0.431 0437 0430 0.447 | 0.862 0.890 0.881 0.885 0.921 0.938 0.913
4 0.535 0.543 0.567 0.559 0.560 0.599 0.593 | 0.949 0966 0.954 0963 0974 0976 0.975

(c) x2 distribution (d) exponential distribution

N 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20

0.25 0.0561 0.052 0.036 0.029 0.034 0.027 0.033 | 0.041 0.048 0.048 0.025 0.021 0.035 0.032
0.5 0.066 0.061 0.062 0.038 0.046 0.055 0.059 | 0.062 0.066 0.059 0.031 0.042 0.045 0.051
0.75 0.092 0.102 0.089 0.095 0.089 0.090 0.071 | 0.087 0.085 0.078 0.063 0.059 0.066 0.048
1 0.128 0.133 0.131 0.122 0.112 0.122 0.133 | 0.101 0.091 0.085 0.086 0.068 0.085 0.071
1.25 0.150  0.167 0.183 0.182 0.170 0.157 0.163 | 0.127 0.116 0.112 0.125 0.098 0.093 0.095
1.5 0.200 0.199 0.209 0.211 0.234 0.229 0.231 | 0.142 0.141 0.125 0.142 0.119 0.133 0.128
2 0.311  0.289 0.294 0.281 0.313 0.280 0.305 | 0.181 0.174 0.205 0.169 0.176 0.151  0.162
3 0.482 0.459 0.447 0.435 0472 0497 0495 | 0.276 0.260 0.262 0.272 0.269 0.251 0.291
4 0.599 0.572 0.590 0.555 0.617 0.625 0.603 | 0.357 0.376 0.360 0.350 0.355 0.381 0.377

T = 200

(a) t5 distribution (b) mixture of normal distributions

N 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20

0.25 0.030 0.037 0.031 0.041 0.033 0.044 0.046 | 0.089 0.083 0.071 0.097 0.093 0.112 0.088
0.5 0.066 0.073 0.079 0.068 0.066 0.073 0.077 | 0.235 0.241 0.216 0.254 0.274 0.259 0.261
0.75 0.125 0.119 0.115 0.137 0.145 0.141 0.138 | 0.441 0.453 0.424 0458 0.509 0.489 0.518
1 0.177  0.181 0.217 0.206 0.214 0.224 0.241 | 0.624 0.629 0.607 0.694 0.717 0.734 0.715
1.25 0.252  0.273 0.251 0.326 0.287 0.315 0.337 | 0.781 0.796 0.759 0.834 0.844 0.864 0.846
1.5 0.361 0.323 0.353 0.408 0.395 0.436 0.383 | 0.893 0904 0.887 0917 0.938 0.940 0.943
2 0.511 0.513 0.507 0.532 0.563 0.542 0.543 | 0.976 0978 0975 0.989 0.988 0.990 0.993
3 0.730 0.726  0.727 0.748 0.758 0.775 0.773 | 1.000 0.999 1.000 1.000 0.999 1.000 1.000
4 0.842 0.833 0.838 0.853 0.874 0.875 0.840 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(c) x? distribution (d) exponential distribution

Ny | 0 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20

0.25 0.0562 0.041 0.051 0.034 0.041 0.044 0.040 | 0.045 0.054 0.035 0.035 0.032 0.023 0.028
0.5 0.097 0.114 0.090 0.083 0.091 0.091 0.084 | 0.074 0.058 0.077 0.052 0.052 0.061 0.042
0.75 0.174 0.164 0.182 0.133 0.152 0.159 0.197 | 0.105 0.105 0.099 0.076 0.075 0.076  0.104
1 0.258 0.239 0.250 0.248 0.235 0.252 0.253 | 0.147 0.154 0.131 0.135 0.135 0.115 0.147
1.25 0.341 0.354 0.322 0.337 0339 0363 0.361 | 0.196 0.185 0.194 0.178 0.178 0.184 0.186
1.5 0.461 0.432 0.410 0.409 0.442 0450 0452 | 0.226 0.232 0.231 0.258 0.258 0.237 0.226
2 0.597 0.599 0.598 0.627 0.598 0.601 0.608 | 0.314 0.342 0.337 0.332 0.332 0.362 0.337
3 0.803 0.767 0.789 0.817 0.822 0.822 0.816 | 0.512 0.517 0.539 0.532 0.532 0.541 0.503
4 0.900 0.903 0.889 0917 0916 0915 0.912 | 0.644 0.698 0.652 0.668 0.668 0.664 0.692




Table S.7: Size and power of the sup LR] 1 test using different corrections in the case of i.i.d. normal errors
(DGP: yy = e4; ey ~i.i.d. N(0,1+61(t > [.5T1])), e = 0.15)
T =100 T = 200
0 full iid. NC | full iid. NC
0 0.049 0.043 0.054 | 0.045 0.045 0.046
0.25 | 0.064 0.079 0.090 | 0.112  0.120 0.131
0.5 0.150  0.162  0.195 | 0.324 0.327 0.371
0.75 | 0.282 0.289 0.340 | 0.572 0.582  0.641
1 0.380 0.415 0.505 | 0.781  0.790  0.857
1.25 | 0.525 0.523 0.654 | 0.894 0.903 0.938
1.5 0.610 0.644 0.751 | 0.958 0.942 0.969
Note: The nomjnal size is 5% and 1,000 replications are used. The column "full" refers to the tests using

the correction ’l/) which allows for non-normal, conditionally heteroskesdatic and serially correlated errors,
as defined by (8); the column "i.i.d." refers to a correction that only allows for i.i.d. non-normal errors, i.e.,
5 PPN ~ — T - ~ - T . . ~ .

P = M4/O'4 — 1, where 62 =171 Zt:l uf and iy =T ! Zt:l uf with U4 the residuals under the

null hypotheses; the column “NC” applies no correction and sets 1/) = 2, which is valid with normal errors.

Table S.8: Size and power of the sup LR}‘)T(na =1),UDmax LRy v and CUSQ tests in the case of i.i.d.
normal errors

T =100 T = 200

0 | sup LRy UDmax CUSQ | sup LR} ; UDmax CUSQ

0 0.049 0.051 0.030 0.045 0.044 0.029
0.25 0.064 0.064 0.059 0.112 0.108 0.116
0.5 0.150 0.136 0.142 0.324 0.302 0.351
0.75 0.282 0.259 0.268 0.572 0.554 0.613

1 0.380 0.356 0.391 0.781 0.762 0.808
1.25 0.525 0.497 0.521 0.894 0.889 0.918
1.5 0.610 0.588 0.599 0.958 0.951 0.965

Table S.9: Size of the sup LRZ}T(ma, ng) and UD max LRy tests in the case of i.i.d. normal errors
(DGP: y = €4, e; ~i.i.d. N(0,1))

T=100
€ Mmeg=nNg=1| mg=1,n,=2 | mg=2,n,=1 | UDmax
0.2 0.039 0.043 0.042 0.042
0.15 0.040 0.035 0.043 0.039
0.1 0.041 0.043 0.042 0.042
T=200
€ Meg=MNg=1| mg=1,n,=2 | mg=2,n,=1 | UDmax
0.2 0.040 0.036 0.040 0.044
0.15 0.037 0.037 0.042 0.044
0.1 0.040 0.041 0.038 0.039




Table S.10: Finite sample performance of the split-sample procedure to select the number of breaks in coefficients and variance
(DGP: yr = pq + po1(t > T°) + e, er ~i.i.d. N(0,1401(t > T?)), e = 0.15, T = 200).

m=n=10 m=n=1 m=n=1
Te=[.5T],T"= [.7T) T¢=[.25T), T"= [.75T]
o=0=1 | po=1,0=3 | po=1,0=5 | po=0=2 | po=0=1| py=0=2 | puy=1,0=3

prob(m = 0,n = 0) 0.930 0.002 0.000 0.000 0.000 0.014 0.000 0.015
prob(m =0,n=1) 0.022 0.000 0.009 0.014 0.000 0.001 0.000 0.006
prob(m = 0,n = 2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
prob(m = 1,n = 0) 0.030 0.313 0.001 0.001 0.018 0.571 0.186 0.031
prob(m =1,n=1) 0.013 0.618 0.880 0.856 0.922 0.331 0.714 0.822
prob(m = 1,n = 2) 0.001 0.014 0.050 0.076 0.016 0.032 0.037 0.072
prob(m = 2,n = 0) 0.001 0.006 0.000 0.000 0.000 0.006 0.000 0.000
prob(m =2,n=1) 0.002 0.040 0.054 0.045 0.039 0.042 0.058 0.051
prob(m = 2,n = 2) 0.001 0.007 0.006 0.008 0.005 0.003 0.005 0.003
prob(K = 0) 0.930 0.002 0.000 0.000 0.000 0.014 0.000 0.015
prob(K = 1) 0.064 0.827 0.327 0.125 0.496 0.679 0.226 0.059
prob(K = 2) 0.006 0.171 0.673 0.875 0.504 0.307 0.774 0.926

m=n=1 m=1n=0 m=0,n=

Te=T"= [.5T] T°= [.5T] TV=[.5T]
fo=0=1 | py=1,0=3 [ig= 1 [ig= 2 [iy=3 0=1 0=2 =3
prob(m = 0,n = 0) 0.000 0.000 0.000 0.000 0.000 0.379 0.020 0.000
prob(m =0,n=1) 0.001 0.009 0.000 0.000 0.000 0.518 0.883 0.907
prob(m = 0,n = 2) 0.000 0.000 0.000 0.000 0.000 0.002 0.005 0.007
prob(m =1,n=0) 0.080 0.000 0.907 0.908 0.916 0.007 0.000 0.001
prob(m =1,n=1) 0.887 0.951 0.056 0.061 0.048 0.080 0.073 0.069
prob(m = 1,n = 2) 0.004 0.010 0.005 0.008 0.004 0.001 0.003 0.006
prob(m = 2,n = 0) 0.000 0.000 0.024 0.016 0.017 0.001 0.001 0.000
prob(m =2,n=1) 0.023 0.022 0.004 0.006 0.011 0.009 0.013 0.010
prob(m = 2,n = 2) 0.005 0.008 0.004 0.001 0.004 0.003 0.002 0.000
prob(K = 0) 0.000 0.000 0.000 0.000 0.000 0.379 0.020 0.000
prob(K =1) 0.962 0.951 0.960 0.962 0.958 0.588 0.940 0.966
prob(K = 2) 0.038 0.049 0.040 0.038 0.042 0.033 0.040 0.034

Note: prob(m = j,n = i) represents the probability of choosing j breaks in mean and i breaks in variance, and prob(K = j) denotes
the probability of selecting j total breaks in either mean or variance. The upper bound for the total number of breaks is set to 2.
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