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1 Introduction

Both the statistics and econometrics literature contain a vast amount of work on issues

related to structural changes with unknown break dates, most of it designed for a single

change (for an extensive review, see Perron, 2006 and Casini and Perron, 2019b). The

problem of multiple structural changes has received attention mostly in the context of a single

regression. Bai and Perron (1998, 2003a) provide a comprehensive treatment: consistency

of estimates of the break dates, tests for structural changes, con�dence intervals for the

break dates, methods to select the number of breaks and e¢ cient algorithms to compute

the estimates; see also Hawkins (1976). Perron and Qu (2006) extend this analysis to the

case where arbitrary linear restrictions are imposed on the coe¢ cients of the model. Also,

Kurozumi and Tuvaandorj (2011) propose an information criterion for the selection of the

number of changes; see also Liu, Wu and Zidek (1997). Bai, Lumsdaine and Stock (1998)

consider asymptotically valid inference for the estimate of a single break date in multivariate

time series allowing stationary or integrated regressors as well as trends with estimation

carried using a quasi maximum likelihood (QML) procedure. Also, Bai (2000) considers a

segmented stationary VAR model estimated again by QML when the break can occur in the

parameters of the conditional mean, the variance of the error term or both. Kejriwal and

Perron (2008, 2010) deal with multiple structural changes in a single equation cointegrated

model. Perron and Yamamoto (2014) derive the limit distribution of the estimates of the

break dates in models with endogenous regressors estimated via an instrumental variable

method, while they argue in Perron and Yamamoto (2015) that using standard least-squares

methods is preferable both for estimation and testing. Casini and Perron (2019a) provides

a limit distribution of the least-squares estimate of the break date in a linear model based

on a continuous-time asymptotic framework, which delivers substantial improvements with

respect to inference using the concept of highest density regions.

With respect to testing for changes in the variance of the regression error, the results

are quite sparse. Horváth (1993) considers a change in the mean and variance (occurring

at the same time) of a sequence of i.i.d. random variables with moments corresponding to

those of a normal distribution. Davis, Huang, and Yao (1995) extend the analysis to an

autoregressive process under similar conditions. Aue et al. (2009) propose non-parametric

tests for changes in the variances or autocovariances of multivariate linear or non-linear time

series models. Deng and Perron (2008) extended the CUSUM of squares (or CUSQ) test of

Brown, Durbin and Evans (1975) allowing general conditions on the regressors and the errors
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(as suggested by Inclán and Tiao, 1994, for normally distributed time series). Xu (2013)

provides a further extension with a robust estimate of the long-run variance of the squared

errors of closer relevance to our objectives. Andrews (1993) considers a one-time structural

change under a Generalized Method of Moment (GMM) setting, thereby allowing for changes

in both coe¢ cients and variance though occurring at the same date; see McConnell and

Pérez-Quirós (2000) for a related application. Qu and Perron (2007a) consider a multivariate

system estimated by quasi maximum likelihood which provides methods to estimate models

with structural changes in both the regression coe¢ cients and the covariance matrix of the

errors. They provide a limit distribution theory for inference about the break dates and also

consider testing for multiple structural changes, though restricted to normally distributed

errors and breaks in coe¢ cients and variance occurring at di¤erent dates.

We build on Qu and Perron (2007a) to provide a comprehensive treatment of testing

jointly for structural changes in both the regression coe¢ cients and the variance of the errors

in a single equation involving stationary regressors, allowing the break dates to be di¤erent

or overlap. Our framework is general and allows for general mixing-type regressors. The

assumptions on the errors are mild; their distribution can be non-normal and conditional

heteroskedasticity is permitted. Extensions to the case with serially correlated errors are

also treated. We provide the required tools to address the following testing problems, among

others: a) testing for given numbers of changes in regression coe¢ cients and variance of the

errors; b) testing for some unknown number of changes within some pre-speci�ed maximum;

c) testing for changes in variance (regression coe¢ cients) allowing for a given number of

changes in the regression coe¢ cients (variance); d) sequential procedures to estimate the

number of changes present. Note that we adopt a QML approach instead of one based on

GMM. Either could be used in principle. The main advantage of using the QML approach

based on normal errors is �rst that it allows a natural extension of Bai and Perron (1998)

widely used in practice. Second, and more importantly perhaps, we can use the e¢ cient

algorithm developed in Qu and Perron (2007a). This is especially important in the current

context since even only two breaks in coe¢ cients and variance implies four possible break

dates. Hence a computationally e¢ cient method to estimate the break dates is needed.

These testing problems are important for practical applications; e.g., documenting struc-

tural changes in the variability of shocks in autoregressive models; see Blanchard and Simon

(2001), Herrera and Pesavento (2005), Kim and Nelson (1999), McConnell and Pérez-Quirós

(2000), Sensier and van Dijk (2004) and Stock and Watson (2002). Given the lack of proper

testing procedures, a common approach is to apply a sup-Wald type tests (e.g., Andrews,
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1993, Bai and Perron, 1998) for changes in the mean of the absolute value of the estimated

residuals, a rather ad hoc procedure. To test for a change in variance only (imposing no

change in the regression coe¢ cients), only can apply a CUSUM of squares test to the esti-

mated residuals, which is adequate only if no change in coe¢ cient is present. Often, changes

in both coe¢ cients and variance occur at possibly di¤erent dates. A common method is to

�rst test for changes in the regression coe¢ cients and conditioning on the break dates found,

then test for changes in variance. This is clearly inappropriate as in the �rst step the tests

su¤ers for severe size distortions. Also, neglecting changes in regression coe¢ cients when

testing for changes in variance induces both size distortions and a loss of power; e.g., Perron

and Yamamoto (2019a) and Pitarakis (2004). Hence, what is needed is a joint approach. To

do so, our testing procedures are based on quasi likelihood ratio tests using a likelihood func-

tion for identically and independently distributed normal errors. We then apply corrections

to have limit distributions free of nuisance parameters with non-normal distribution and

conditional heteroskedasticity. We also consider extensions that allow for serial correlation.

The empirical usefulness of our proposed procedure is perhaps best explained via appli-

cations related to changes in the variance of many macroeconomic variables (i.e., the great

moderation); see Gadea et al. (2018) and Perron and Yamamoto (2019b). The testing issues

of interest are, among others: a) testing for a change in variance in 1984 (the commonly

accepted date for the start of the great moderation); b) testing for an additional change

in variance, say following the great recession of 2007; c) estimating the total number of

changes; d) testing whether any changes are present; e) performing all these tests allowing

for changes in the parameters of a conditional regression model (e.g., a change in slope in

1973 for GDP as argued in Perron, 1989); f) performing all the corresponding tests when

testing for changes in the regression parameters allowing for changes in the variance of the

errors. For instance, an issue of interest in macroeconomics is whether the great moderation

was due to changes in the persistence parameters (the sum of the autoregressive coe¢ cients)

as suggested by the �improved policy�hypothesis or in the error variance as suggested by

the �good luck�hypothesis or in both. Our tests allow to disentangle these e¤ects, including

cases with multiple breaks. Section 7 provides empirical examples related to in�ation and

real interest rate series. To reach the right conclusion about the number and nature of the

changes, we use all tests proposed in this paper in a careful way. Obviously, the number

of potential other applications abound. One could argue that it is su¢ cient to have tests

for changes in parameters that are robust to unknown patterns of changes in variance. An

example is the work of Górecki et al. (2018). However, their tests are based on a two step
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approach; �rst estimating the error process assuming no coe¢ cient breaks and subsequently

testing for changes in the coe¢ cients using this estimate. Accordingly, the tests can su¤er

from severe power losses as the estimated error process can be contaminated when struc-

tural changes are actually present in the coe¢ cients. Indeed, unreported simulations show

their tests to have non-monotonic power, i.e., power that decreases as the magnitude of the

change in the regression parameters increases. This testing problem is easily covered via our

supLR3;T and UDmaxLR3;T tests, which maintain good power properties. Similarly, one

could be content with only testing for a change in variance allowing for unspeci�ed changes

in the regression parameters. The only tests we know that tackle this issue are based on the

supLR2;T and UDmaxLR2;T tests that we propose.

The paper is structured as follows. Section 2 presents the models and testing problems,

with the quasi-likelihood tests stated in Section 3. Section 4 discusses the assumptions needed

on the regressors and errors, derives the relevant limit distributions under the various null

hypotheses and proposes corrected versions of the tests that have limit distributions free

of nuisance parameters. Section 4.1 deals with the case of martingale di¤erence errors,

Section 4.2 extends the analysis to serially correlated errors, Section 4.3 covers the case

with an unknown number of breaks. Section 4.4 discusses tests for an additional break in

either the regression coe¢ cients or the variance. Section 5 provides simulation results to

assess the adequacy of the suggested procedures in terms of their �nite sample size and

power and provides some practical guidelines. Section 6 discusses methods to estimate the

number of breaks in the regression coe¢ cients and the variance. Section 7 provides empirical

applications and Section 8 brief concluding remarks. An appendix contains some technical

derivations. An online supplement contains additional material.

2 Model and testing problems

We start with a description of the most general speci�cation of the model considered where

multiple breaks occur in both the coe¢ cients of the conditional mean and the variance of the

errors, at possibly di¤erent times. This will allow us to set up the notation used throughout

the paper. The main framework of analysis can be described by the following multiple linear

regression with m breaks (or m+ 1 regimes) in the conditional mean equation:

yt = x0t� + z0t�j + ut; t = T cj�1 + 1; :::; T
c
j ; (1)

for j = 1; :::;m + 1. In this model, yt is the observed dependent variable at time t; both

xt (p � 1) and zt (q � 1) are vectors of covariates and � and �j (j = 1; :::;m + 1) are
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the corresponding vectors of coe¢ cients; ut is the disturbance at time t. The break dates

(T c1 ; :::; T
c
m) are explicitly treated as unknown (with the convention T

c
0 = 0 and T cm+1 = T

used). This is a partial structural change model since the parameter vector � is not subject

to shifts and is estimated using the entire sample. When p = 0, we obtain a pure structural

change model when all coe¢ cients are subject to change. We also allow for n breaks (or n+1

regimes) for the variance of the errors occurring at unknown dates (T v1 ; :::; T
v
n ). Accordingly,

E(ut) = 0 and E(u2t ) = �2i for T
v
i�1 + 1 � t � T vi (i = 1; :::; n + 1), where again we use

the convention that T v0 = 0 and T
v
n+1 = T . We allow the breaks in the variance and in the

regression coe¢ cients to happen at di¤erent times, hence the m-vector (T c1 ; :::; T
c
m) and the

n-vector (T
v

1 ; :::; T
v
n ) can have all distinct elements or they can overlap partly or completely.

We let K denote the total number of break dates and max[m;n] � K � m + n. When the

the breaks overlap completely, m = n = K. The multiple linear regression system (1) may

be expressed in matrix form as Y = X� + �Z� +U , where Y = (y1; :::; yT )0; X = (x1; :::; xT )
0,

U = (u1; :::; uT )
0, � = (�01; :::; �

0
m+1)

0, and �Z diagonally partitions Z at (T c1 ; :::; T
c
m), i.e.,

�Z = diag(Z1; :::; Zm+1) with Zj = (zT cj�1+1; :::; zT cj )
0. The true value of the parameters are

�0 = (�0
0

1 ; :::; �
00

m+1)
0 and (T c01 ; :::; T

c0
m ) and �Z

0 diagonally partitions Z at (T c01 ; :::; T
c0
m ). Hence,

the data-generating process (DGP) is Y = X�0 + �Z0�0 + U with E(UU 0) = 
0, where

the diagonal elements of 
0 are �2i0 for T
v0
i�1 + 1 � t � T v0i (i = 1; :::; n + 1). We also

consider cases with serial correlation in the errors for which the o¤-diagonal elements of 
0

need not be 0. This is a special case of the class of models considered by Qu and Perron

(2007a). Their method of estimation is quasi maximum likelihood (QML) assuming serially

uncorrelated Gaussian errors. They prove consistency of the estimates of the break fractions

(�01; :::; �
0
K) � (T 01 =T; :::; T 0K=T ), where T 0i (i = 1; :::; K) denotes the union of the elements of

(T c01 ; :::; T
c0
m ) and (T

v0
1 ; :::; T

v0
n ). This is done under general conditions on the regressors and

the errors; see Section 4. Importantly, from a practical perspective, they provide an e¢ cient

estimation algorithm, which we build upon.

The testing problems are the following: TP-1: H0 : fm = n = 0g versus H1 : fm = 0,

n = nag; TP-2: H0 : fm = ma; n = 0g versus H1 : fm = ma, n = nag; TP-3: H0 : fm =

0; n = nag versus H1 : fm = ma, n = nag; TP-4: H0 : fm = n = 0g versus H1 : fm = ma,

n = nag, wherema and na are some positive numbers selected a priori. We shall also consider

testing problems where the alternatives specify some unknown numbers of breaks, up to some

maximum. These are: TP-5: H0 : fm = n = 0g versus H1 : fm = 0, 1 � n � Ng; TP-6:
H0 : fm = ma; n = 0g versus H1 : fm = ma, 1 � n � Ng; TP-7: H0 : fm = 0; n = nag
versus H1 : f1 � m � M , n = nag; TP-8: H0 : fm = n = 0g versus H1 : f1 � m � M ,
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1 � n � Ng. We shall deal with: TP-9: fm = ma; n = nag versus H1 : fm = ma + 1,

n = nag; TP-10: fm = ma; n = nag versus H1 : fm = ma, n = na + 1g, where ma and na
non-negative integers. These are useful to assess the adequacy of a model with some number

of breaks assessing whether including one more is warranted. In Section 6, we also consider

sequential testing procedures that allow estimating the number of breaks in both � and �2.

3 The quasi-likelihood ratio tests

We consider the likelihood ratio (LR) tests obtained assuming normally distributed and

serially uncorrelated errors, for TP-1 to TP-4. We estimate the model using the quasi-

maximum likelihood estimation method (QMLE). Consider TP-1 with no change in � (m =

q = 0) and testing for na changes in �2. Under H0, the log-likelihood function is:

log eLT = �(T=2) (log 2� + 1)� (T=2) log e�2; (2)

where e�2 = T�1
PT

t=1(yt � x0t
e�)2 and e� = (PT

t=1 xtx
0
t)
�1(
PT

t=1 xtyt). Under H1, for a given

partition fT v1 ; :::; T vng, the log-likelihood value is given by

log L̂T (T
v
1 ; :::; T

v
n ) = �(T=2) (log 2� + 1)�

Pna+1
i=1 [(T

v
i � T vi�1)=2] log �̂

2
i ; (3)

where the QMLE jointly solves �̂ = (
Pna+1

i=1

PT vi
t=T vi�1+1

xtx
0
t=�̂

2
i )
�1(
Pna+1

i=1

PT vi
t=T vi�1+1

xtyt=�̂
2
i )

and �̂2i = (T
v
i � T vi�1)�1

PT vi
t=T vi�1+1

(yt� x0t�̂)2, for i = 1; :::; na + 1. Hence, the Sup-LR test is

supLR1;T (na; "jm = n = 0) = sup(�v1 ;:::;�vna)2�v;"
2[log L̂T

�
T v1 ; :::; T

v
na

�
� log eLT ]

= 2[log L̂T (T̂
v
1 ; :::; T̂

v
na)� log eLT ]

where (T̂ v1 ; :::; T̂
v
na) are the QMLE obtained imposing the restriction of no change in the

coe¢ cients and �v;"=f
�
�v1; :::; �

v
na

�
;
���vi+1 � �vi

�� � " (i = 1; :::; na � 1); �v1 � "; �vna � 1� "g,
with " a truncation imposing a minimal length for each segment. For TP-2, there are ma

breaks in � under both H0 and H1, so the test pertains to assess whether there are 0 or

na breaks in variance. For a given partition fT c1 ; :::; T cma
g, the likelihood function under

H0 is log eLT (T c1 ; :::; T cma
) = �(T=2) (log 2� + 1) � (T=2) log e�2, where e�2 = T�1

PT
t=1(yt �

x0t
e� � z0t

e�t;j)2, e� = (X 0M �ZX)
�1X 0M �ZY and e�t;j = (Z 0jZj)

�1Zj(Yj � Xj
e�) for T cj�1 < t �

T cj , with M �Z = I � �Z
�
�Z 0 �Z

��1 �Z 0, �Z = diag (Z1; :::; Zma+1), and Zj = (zT cj�1+1; :::; zT cj )
0,

Yj = (yT cj�1+1; :::; yT cj )
0, Xj = (xT cj�1+1; :::; xT cj )

0 for T cj�1 < t � T cj (j = 1; :::;ma + 1). The

log-likelihood value under H1 is, for given partitions fT c1 ; :::; T cma
g and fT v1 ; :::; T vnag,

log L̂T
�
T c1 ; :::; T

c
ma
;T v1 ; :::; T

v
na

�
= �(T=2) (log 2� + 1)�

Pna+1
i=1 [(T

v
i � T vi�1)=2] log �̂

2
i ; (4)
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where the QMLE solves the following equations: �̂2i = [T vi � T vi�1]
�1PT vi

t=T vi�1+1
(yt � x0t�̂ �

z0t�̂t;j)
2 (i = 1; :::; na+1) and �̂ = (X�0M �Z�X

�)�1X�0M �Z�Y
�, whereM �Z� = I� �Z�

�
�Z 0� �Z�

��1 �Z 0�
with �Z� = diag(Z�

1 ; :::; Z
�
ma+1), Z

�
j = (z

�
T cj�1+1

; :::; z�T cj )
0, and z�t = (zt=�̂i), for T

v
i�1 < t � T vi

(i = 1; :::; na + 1). Also, �̂t;j = (Z�0
j Z

�
j )
�1Z�0

j (Y
�
j � X�

j �̂) for T
c
j�1 < t � T cj , where

Y �
j = (y

�
T cj�1+1

; :::; y�T cj )
0, X�

j = (x
�
T cj�1+1

; :::; x�T cj )
0 with x�t = (xt=�̂i) and y

�
t = (yt=�̂i). Hence,

supLR2;T (ma; na; "jn = 0;ma)

= 2[ sup
(�c1;:::;�cma ;�

v
1 ;:::;�

v
na)2�"

log L̂T (T
c
1 ; :::; T

c
ma
;T v1 ; :::; T

v
na)� sup

(�c1;:::;�cma)2�c;"
log eLT (T c1 ; :::; T cma

)]

= 2[log L̂T (eT c1 ; :::; eT cma
; eT v1 ; :::; eT vna)� log eLT (T̂ c1 ; :::; T̂ cma

)];

where �c;" = f(�c1; :::; �cm) ;
���cj+1 � �cj

�� � " (j = 1; :::;ma � 1); �c1 � "; �cma
� 1� "g and

�" = f(�c1; :::; �cm; �v1; :::; �vn) ; for (�1; :::; �K) = (�c1; :::; �cm) [ (�v1; :::; �vn) (5)

j�j+1 � �jj � " (j = 1; :::; K � 1); �1 � "; �K � 1� "g :

Note that we denote the estimates of the break dates in coe¢ cients and variance by a ���
when these are obtained jointly, and by a �^�when obtained separately.

The set �" which de�nes the possible values of the break fractions in � (�
c
1; :::; �

c
m) and

in �2 (�v1; :::; �
v
m) allows them to have some (or all) common elements or be completely

di¤erent. What is important is that each break fraction be separated by some " > 0. This

does complicate inference since many cases need to be considered. To illustrate, consider

ma = na = 1. We can have K = 1, a one break model with both � and �2 changing at the

same date. On the other hand, if K = 2, the break date for the change in � is di¤erent from

that for the change in �2. This leads to two additional possible cases: a) �c1 � �v1 � " (the

break in � is before that in �2), b) �c1 � �v1 + " (the break in � is after that in �2). The

maximized likelihood function for these two cases can be evaluated using the algorithm of

Qu and Perron (2007a) since it permits imposing restrictions. For example, if �c1 � �v1 � ",

we have a two break model and the restrictions are that the error variances in the �rst

and second regimes are identical, and the coe¢ cients are the same in the second and third

regimes. Hence, for the case ma = na = 1, there are three maximized likelihood values to

construct and the test corresponds to the maximal value over these three cases. When ma

or na are greater than one, more cases need to be considered, but the principle is the same.

For TP-3, H0 speci�es na breaks in �2 and none in �. For a partition fT v1 ; :::; T vng, the
likelihood function is log eLT �T v1 ; :::; T vna� = �(T=2) (log 2� + 1)�Pna+1

i=1 [(T
v
i �T vi�1=2] log e�2i ,

where e�2i = (T vi � T vi�1)
�1PT vi

t=T vi�1+1
(yt � x0t

e� � z0t
e�)2 for i = 1; :::; na + 1, with (e�0;e�0)0 =
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(W �0W �)�1W �0Y �, W � = (w�1 ; :::; w
�
T )
0 and w�t = (x

�0
t ; z

�0
t )

0. Under H1, there are ma breaks

in � and na breaks in �2 and the likelihood function is (4). The sup-LR test is

supLR3;T (ma; na; "jm = 0; na)

= 2[ sup
(�c1;:::;�cma ;�

v
1 ;:::;�

v
na)2�"

log L̂T (T
c
1 ; :::; T

c
ma
;T v1 ; :::; T

v
na)� sup

(�v1 ;:::;�vna)2�v;"
log eLT (T v1 ; :::; T vna)]

= 2[log L̂T (eT c1 ; :::; eT cma
; eT v1 ; :::; eT vna)� log eLT (T̂ v1 ; :::; T̂ vna)]

For TP-4, under H0 we have no break and the log-likelihood function is (2). H1 speci�es ma

breaks in � and na breaks in �2 and the log likelihood is (4). Hence, the Sup-LR test is

supLR4;T (ma; na; "jn = m = 0)

= 2[sup(�c1;:::;�cma ;�
v
1 ;:::;�

v
na)2�"

log L̂T
�
T c1 ; :::; T

c
ma
;T v1 ; :::; T

v
na

�
� log eLT ]

= 2[log L̂T (eT c1 ; :::; eT cma
; eT v1 ; :::; eT vna)� log eLT ] (6)

4 The limiting distributions of the tests

The limit distribution of the tests for martingale di¤erence errors is presented in Section 4.1

with extensions to serially correlated errors in 4.2. Section 4.3 deals with double maximum

tests and 4.4 with tests for an additional break; �!p�denotes convergence in probability,

�)�weak convergence under the Skorohod topology and jj � jj is the Euclidean norm.

4.1 The case with martingale di¤erence errors

When �2 is constant under H0 but allowed to change under H1 (TP-1,2,4), we specify:

�Assumption A1: The errors futg form an array of martingale di¤erences relative to Ft = �-

field f:::; zt�1; zt; :::; xt�1; xt; :::; ut�2; ut�1g, E(u2t ) = �20 for all t and T
�1=2P[Ts]

t=1(u
2
t=�

2
0�1))

 W (s), where W (s) is a Wiener process and  = limT!1 var(T
�1=2PT

t=1(u
2
t=�

2
0 � 1)).

Assumption A1 rules out instability in the error process and states that a basic functional

central limit theorem holds for the partial sums of the squared errors. When changes in the

coe¢ cients are tested (TP-3 and TP-4), we assume, with wt = (x0t; z
0
t)
0:

�Assumption A2: The errors futg form an array of martingale di¤erences relative to Ft = �-

field f:::; zt�1; zt; :::; xt�1; xt; :::; ut�2; ut�1g, T�1
P[Ts]

t=1 wtw
0
t !p sQ; uniformly in s 2 [0; 1],

with Q some positive de�nite matrix and T�1=2
P[Ts]

t=1 ztut ) �0Q
1=2Wq (s) ; where Wq (s) is

a q-vector of independent Wiener processes independent of W (s).

The �rst part of Assumption A2 rules out trending regressors and requires the limit

moment matrix of the regressors be homogeneous throughout the sample. Hence, we avoid

8



changes in the marginal distribution of the regressors when the coe¢ cients do not change

(e.g., Hansen, 2000, Cavaliere and Georgiev, 2018). This follows from our basic premise that

regimes are de�ned by changes in some coe¢ cients. The second part of A2 assumes no serial

correlation in the errors ut but this will be relaxed later. Since some testing problems imply a

non-zero number of breaks underH0, i.e. in TP-2 and TP-3, we need the following conditions

to ensure that the estimates of the break fractions are consistent at a fast enough rate so

that they do not a¤ect the distributions of the parameters asymptotically. This problem was

analyzed in Qu and Perron (2007a) and we simply use the same set of assumptions:

�Assumption A3: The conditions stated in Assumptions A1-A9 of Qu and Perron (2007a)
are assumed to hold with the segments de�ned for T 0i (i = 1; :::; K). However, A6 is replaced

by (for j = 1; :::;m and i = 1; :::; n): �0j+1 � �0j = v�T �
�
j and �i+1;0 � �i;0 = vT�

�
i;0, where

(��j ; �
�
i;0) 6= 0 and are independent of T . Moreover, v�T is either a positive number independent

of T or a sequence of positive numbers satisfying v�T ! 0 and T 1=2v�T= (log T )
2 ! 1, while

vT is a sequence of positive numbers satisfying vT ! 0 and T 1=2vT= (log T )
2 !1.

The main di¤erence is that we require the changes in the variance of the errors to decrease

to 0 at a slow enough rate as T increases, while the changes in the coe¢ cients can be �xed

or decreasing. Both cases ensure that the estimates of the break fractions are consistent and

that the limit distribution of the parameter estimates are the same as when the true break

dates are known. The requirement that the change in variance must decrease as T increases

is to ensure that A2 holds when changes in variance are permitted under the null hypothesis,

in particular if lagged dependent variables are present. Otherwise the limit distribution of

the test for TP-3 is not invariant to nuisance parameters. This is not constraining in practice

since the rate of decrease can be as slow as desired. We will show via simulations that the

exact size of the test is close to the nominal level whether the changes in variance are small

or large. To see why this is needed to ensure that A2 is satis�ed, let ztu�t = ztut=�i0. Then,

T�1=2
P[Ts]

t=1 ztut = T�1=2�0
P[Ts]

t=1 ztu
�
t+
Pna+1

i=1 (
�i0 � �0
�i0

)(T�1=2
PT v0i

t=T v0i�1+1
ztut)) �0Q

1=2Wq (s) ;

where �0 = �10 without loss of generality. The result follows since [(�i0��0)=�i0] = Op(�T ),

�T ! 0 and T�1=2
PT v0i

t=T v0i�1+1
ztut = Op(1). The same applies to the requirement that

T�1
P[Ts]

t=1 wtw
0
t !p sQ uniformly in s. To see that this holds when lagged dependent variables

are present, consider a simple AR(1) model yt = �yt�1 + ut in which �2 has n breaks and

j�j < 1. Using the variance adjusted series y�t = �y�t�1 + u�t where u
�
t = ut=�i0, we have:

T�1
P[Ts]

t=1 ztz
0
t = T�1

P[Ts]
t=1 y

2
t�1 = T�1�20

P[Ts]
t=1 y

�2
t�1 +Op(�T )

p! sQ; (7)

9



where Q = �20=(1 � �2) (see Supplement A). Why v�T can remain �xed when � changes is

because such breaks do not a¤ect the moments of the errors, and when lagged dependent

variables are present changes in � imply changes in the marginal distribution of the regressors

(e.g., the lagged dependent variables) occurring at the same times, which is allowed. The

limiting distributions of the LR tests under H0, are stated in the following Theorem.

Theorem 1 Under the relevant null H0, we have, as T !1: a) For TP-1, under A1:

supLR1;T (na; "jm = n = 0)) sup(�v1 ;:::;�vna)2�v;"
 

2

naX
i=1

�
�viW

�
�vi+1

�
� �vi+1W (�vi )

�2
�vi+1�

v
i

�
�vi+1 � �vi

�
b) For TP-2, under A1 and A3,

supLR2;T (ma; na; "jn = 0;ma) ) sup
(�v1 ;:::;�vna)2�cv;"

 

2

naX
i=1

�
�viW

�
�vi+1

�
� �vi+1W (�vi )

�2
�vi+1�

v
i

�
�vi+1 � �vi

�
� sup

(�v1 ;:::;�vna)2�v;"

 

2

naX
i=1

�
�viW

�
�vi+1

�
� �vi+1W (�vi )

�2
�vi+1�

v
i

�
�vi+1 � �vi

�
where �cv;" = f(�v1; :::; �vn) ; for (�1; :::; �K) = (�c01 ; :::; �c0m) [ (�v1; :::; �vn), j�j+1 � �jj � " (j =

1; :::; K � 1); �1 � "; �K � 1� "g. c) For TP-3, under A2 and A3:

supLR3;T (ma; na; "jm = 0; na) ) sup
(�c1;:::;�cma)2�vc;"

maX
j=1

jj�cjWq(�
c
j+1)� �cj+1Wq(�

c
j)jj2

�cj+1�
c
j(�

c
j+1 � �cj)

� sup
(�c1;:::;�cma)2�c;"

maX
j=1

jj�cjWq(�
c
j+1)� �cj+1Wq(�

c
j)jj2

�cj+1�
c
j(�

c
j+1 � �cj)

where �vc;" = f(�c1; :::; �cm) ; for (�1; :::; �K) = (�c1; :::; �
c
m) [ (�v01 ; :::; �v0n ), j�j+1 � �jj � "

(j = 1; :::; K � 1); �1 � "; �K � 1� "g. d) For TP-4, under A1 and A2:

supLR4;T (ma; na; "jn = m = 0) ) sup
(�c1;:::;�cma ;�

v
1 ;:::;�

v
na)2�"

264
Pma

j=1

jj�cjWq(�
c
j+1)��cj+1Wq(�

c
j)jj2

�cj+1�
c
j(�cj+1��cj)

+ 
2

Pna
i=1

(�viW(�vi+1)��vi+1W (�vi ))
2

�vi+1�
v
i (�vi+1��vi )

375
� sup

(�c1;:::;�cma ;�
v
1 ;:::;�

v
na)2�cv;"

264
Pma

j=1

jj�cjWq(�
c
j+1)��cj+1Wq(�

c
j)jj2

�cj+1�
c
j(�cj+1��cj)

+ 
2

Pna
i=1

(�viW(�vi+1)��vi+1W (�vi ))
2

�vi+1�
v
i (�vi+1��vi )

375
where �cv;" = f

�
�c1; :::; �

c
m;�

v
1; :::; �

v
na

�
;
���cj+1 � �cj

�� � " (j = 1; :::;ma�1); �c1 � "; �cma
� 1�",���vi+1 � �vi

�� � " (i = 1; :::; na � 1); �v1 � "; �vna � 1� "g.
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Except for TP-1, the limit distributions depend on the interval between the break frac-

tions for � and �2 when they do not coincide. This imposes restrictions on the parameter

space of the break fractions. Hence, the critical values are smaller than what is obtained

from the standard limit distribution in Bai and Perron (1998). Although the computation of

such limit distributions might be feasible, it is beyond the scope of this study. The results,

however, show that these distributions are bounded by limit random variables which can

easily be simulated. This follows since �cv;" � �v;", �vc;" � �c;" and �" � �cv;". Hence, a con-
servative testing procedure is possible. As we shall see, the test is barely conservative if the

trimming parameter " is small, though as " gets large (e.g. 0:20) the test will be somewhat

undersized. The proof of this Theorem is given in the Appendix. For TP-3, the bound is the

same as the limit distribution in Bai and Perron (1998, 2003b) and the critical values they

provided can be used. For TP-1 and TP-2, the same limit distribution (for a one parameter

change) applies except for the scaling factor ( =2). This quantity can nevertheless still be

consistently estimated. Consider the class of estimates:

 ̂ = T�1
PT�1

j=�(T�1) ! (j; bT )
PT

t=jjj+1 �̂t�̂t�j (8)

where �̂t = (û
2
t=�̂

2)� 1 and �̂2 = T�1
PT

t=1 û
2
t with ût the estimated residuals. Here ! (j; bT )

is a weight function and bT some selected bandwidth. The estimate  ̂ will be consistent

under some conditions on the choice of ! (j; bT ) and the rate of increase of bT as a function

of T . Following Kejriwal (2009), see also Kejriwal and Perron (2010), we use the residuals

under H0 to construct the sample autocovariances of �t but the residuals under H1 to select

the bandwidth parameter bT ; see Supplement B for details. In our simulations and empirical

applications, we use the Quadratic Spectral kernel and to select bT we use the method of

Andrews (1991) with an AR(1) approximation. If the errors are i:i:d:,  = �4=�
4 � 1,

which can be consistently estimated using  ̂ = �̂4=�̂
4 � 1, where �̂2 = T�1

PT
t=1 û

2
t and

�̂4 = T�1
PT

t=1 û
4
t with ût the residuals under the null or alternative hypotheses. Also, if the

errors are normal as in Qu and Perron (2007a),  = 2 so that no adjustment is necessary.

We shall only consider a correction involving  ̂ as de�ned by (8) for all cases; Supplement

C shows that there is no loss in power in doing so and that the size remains adequate. The

following corrected statistics then have nuisance parameter free limit distributions:

supLR�1;T = (2= ̂) supLR1;T ) sup
(�v1 ;:::;�vna)2�v;"

naX
i=1

�
�viW

�
�vi+1

�
� �vi+1W (�vi )

�2
�vi+1�

v
i

�
�vi+1 � �vi

� (9)

supLR�2;T = (2= ̂) supLR2;T ) sup
(�v1 ;:::;�vna)2�cv;"

naX
i=1

�
�viW

�
�vi+1

�
� �vi+1W (�vi )

�2
�vi+1�

v
i

�
�vi+1 � �vi

�
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� sup
(�v1 ;:::;�vna)2�v;"

naX
i=1

�
�viW

�
�vi+1

�
� �vi+1W (�vi )

�2
�vi+1�

v
i

�
�vi+1 � �vi

� :

For TP-4, it is possible to obtain a transformation with a limit distribution free of nuisance

parameters but the procedure is more involved. It is given by

supLR�4;T = supLR4;T � [( ̂ � 2)= ̂]LRv; (10)

where LRv is the LR test for 0 versus na breaks in variance evaluated at feT v1 ; :::; eT vnag obtained
by maximizing the likelihood function jointly allowing for ma breaks in �, i.e.,

LRv = 2[log L̂T (eT v1 ; :::; eT vna)� log eLT ]; (11)

where log L̂T (�) and log eLT are de�ned by (3) and (2), respectively. Note that LRv is not

equivalent to LR1;T (na; "jm = n = 0) which is based on the estimates of the break dates

for the changes in variance assuming no break in coe¢ cients. Since feT v1 =T; :::; eT vna=Tg are
consistent estimates of the break fractions whether ma = 0 or not, we have:

LRv ) ( =2) sup
(�v1 ;:::;�vna)2�"

naX
i=1

(�viW
�
�vi+1

�
� �vi+1W (�vi ))

2

�vi+1�
v
i

�
�vi+1 � �vi

�
and, hence,

supLR�4;T ) sup
(�c1;:::;�cma ;�

v
1 ;:::;�

v
na)2�"

264
Pma

j=1

jj�cjWq(�
c
j+1)��cj+1Wq(�

c
j)jj2

�cj+1�
c
j(�cj+1��cj)

+
Pna

i=1

(�viW(�vi+1)��vi+1W (�vi ))
2

�vi+1�
v
i (�vi+1��vi )

375

� sup
(�c1;:::;�cma ;�

v
1 ;:::;�

v
na)2�cv;"

264
Pma

j=1

jj�cjWq(�
c
j+1)��cj+1Wq(�

c
j)jj2

�cj+1�
c
j(�cj+1��cj)

+
Pna

i=1

(�viW(�vi+1)��vi+1W (�vi ))
2

�vi+1�
v
i (�vi+1��vi )

375 : (12)

The limit distribution (12) is new and we obtain the asymptotic critical values via sim-

ulations. The Wiener processes Wq(�) and W (�) are approximated by the partial sums

T�1=2
P[T�]

t=1 et and T
�1=2P[T�]

t=1 �t with et � i:i:d:N(0; Iq) and �t � i:i:d:N(0; 1) which are

mutually independent. The number of replications is 10,000 and T = 1; 000. For each repli-

cation, a sum of the supremum of
Pma

j=1(jj�
c
jWq(�

c
j+1)��cj+1Wq(�

c
j)jj2)=�cj+1�cj(�cj+1��cj) with

respect to (�c1; :::; �
c
ma
) and that of

Pna
i=1(�

v
iW

�
�vi+1

�
��vi+1W (�vi ))

2)=�vi+1�
v
i

�
�vi+1 � �vi

�
with

respect to (�v1; :::; �
v
na) is obtained via a dynamic programming algorithm. The critical val-

ues for tests of size 1%, 2:5%, 5% and 10% are presented in Table 1 for q between 1 and

5 and " = 0:1; 0:15, 0:20 and 0:25. For " = 0:1; 0:15; 0:2, ma = 1; 2 and na = 1; 2: For

" = 0:25;ma = 1, and na = 1 given that " = 0:25 imposes a maximal number of 2 breaks.
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4.2 Extensions to serially correlated errors

We now consider the case with serially correlated errors. For TP-1 and TP-2, the results

are the same and the sup LR�1;T and sup LR
�
2;T statistics are asymptotically invariant to

non-normal errors, serial correlation and conditional heteroskedasticity so that the limit

distribution (9) still applies. For TP-3 and TP-4, things are more complex. For TP-3, the

LR type test for changes in � depends on nuisance parameters. We suggest the following

robust Wald type statistic: sup(�c1;:::;�cma)2�"W3;T (ma; na; "jm = 0; na), where

W3;T (ma; na; "jm = 0; na) = T �̂
0
R0(RV̂ (�̂)R0)�1R�̂ (13)

with �̂ = (�̂
0
1; :::; �̂

0
ma+1)

0 the QMLE of � under a given partition of the sample, R is the

conventional matrix such that (R�)0 = (�01 � �02; :::; �
0
ma
� �0ma+1) and V̂ (�̂) is an estimate of

the covariance matrix of �̂ robust to serial correlation and heteroskedasticity, i.e., a consis-

tent estimate of V (�̂) = plimT!1 T
�
�Z�0�
�Z��
��1


 �Z��

�
�Z�0�
�Z��
��1
, where �Z�� = MX�

�Z�; 
 �Z��
=

E( �Z�0� U
�
bU

�0
b
�Z��), U

�
b =MX�U�,MX� = IT�X�(X

0
�X�)

�1X 0
�, with �Z� = diag

�
Z�
1 ; :::; Z

�
ma+1

�
;

Z�
j = (z

�
T cj�1+1

; :::; z�T cj )
0; U� = (u

�
1 ; :::; u

�
T )
0 ; z�t = (zt=�̂i) and u

�
t = (ut=�̂i), for T

v0
i�1 < t � T v0i

(i = 1; :::; na + 1). In practice, the computation of this test can be very involved. Following

Bai and Perron (1998), we suggest �rst to use the dynamic programming algorithm to get

the break points corresponding to the global maximizers of the likelihood function de�ned

by (4), then plug the estimates into (13) to construct the test. This will not a¤ect the

consistency of the test since the break fractions are consistently estimated.

For TP-4, potential serial correlations in both ut and �t must be accounted for. This can

easily be achieved since supLR4;T is asymptotically equivalent to supLR�4;T = supLR3;T +

LRv. Because of the block diagonality of the information matrix, corrections can be applied

to each component separately. The �rst term is constructed as discussed above, namely

W3;T de�ned by (13), except that one can use zt instead of z�t since H0 speci�es no break in

variance. The second term LRv is as de�ned by (11) with  ̂ constructed by (8).

4.3 Double maximum tests

The tests discussed above need prior information about H1, i.e., the number of breaks in

� and in �2, which may be unknown. Hence the need for TP-5 to TP-8. Bai and Perron

(1998) proposed double maximum tests to solve this problem with only breaks in �. They are

tests of no break against an unknown number of breaks given some upper bound. We shall

only consider their UDmax test. The double maximum tests can play a signi�cant role in

13



testing for structural changes and it is arguably the most useful tests to apply when trying to

determine if structural changes are present. While tests for one break are consistent against

multiple changes, their power in �nite samples can sometimes be poor. There are types of

multiple structural changes that are di¢ cult to detect with a test for a single change (e.g.,

two breaks with the �rst and third regimes the same). Also, tests for a particular number

of changes may have non monotonic power when the number of changes is greater than

speci�ed. Furthermore, the simulations of Bai and Perron (2006) show, in the context of

testing for changes in the regression coe¢ cients, that the power of the double maximum

tests is almost as high as the best power achievable using the test speci�ed with the correct

number of breaks. All these elements strongly point to their usefulness. For each testing

problem, the tests and their limit distributions are presented in the following Theorem.

Theorem 2 Under the relevant H0, we have, as T !1, a) For TP-5, under A1:

UDmaxLR1;T = max
1�na�N

n�1a supLR�1;T (na; "jm = n = 0)

) max
1�na�N

n�1a sup
(�v1 ;:::;�vna)2�v;"

naX
i=1

�
�viW

�
�vi+1

�
� �vi+1W (�vi )

�2
�vi+1�

v
i

�
�vi+1 � �vi

�
b) For TP-6, under A1 and A3:

UDmaxLR2;T = max
1�na�N

n�1a supLR�2;T (ma; na; "jn = 0;ma)

) max
1�na�N

n�1a sup
(�v1 ;:::;�vna)2�cv;"

naX
i=1

�
�viW

�
�vi+1

�
� �vi+1W (�vi )

�2
�vi+1�

v
i

�
�vi+1 � �vi

�
� max

1�na�N
n�1a sup

(�v1 ;:::;�vna)2�v;"

naX
i=1

�
�viW

�
�vi+1

�
� �vi+1W (�vi )

�2
�vi+1�

v
i

�
�vi+1 � �vi

�
c) For TP-7, under A2 and A3:

UDmaxLR3;T = max
1�ma�M

m�1
a supLR3;T (ma; na; "jm = 0; na)

) max
1�ma�M

m�1
a sup
(�c1;:::;�cma)2�vc;"

maX
j=1

jj�cjWq(�
c
j+1)� �cj+1Wq(�

c
j)jj2

�cj+1�
c
j(�

c
j+1 � �cj)

� max
1�ma�M

m�1
a sup
(�c1;:::;�cma)2�c;"

maX
j=1

jj�cjWq(�
c
j+1)� �cj+1Wq(�

c
j)jj2

�cj+1�
c
j(�

c
j+1 � �cj)

d) For TP-8, under A1 and A2:

UDmaxLR4;T = max
1�na�N

max
1�ma�M

(na +ma)
�1 supLR�4;T (ma; na; "jn = m = 0)

14



) max
1�na�N

max
1�ma�M

(na +ma)
�1 sup
(�c1;:::;�cma ;�

v
1 ;:::;�

v
na)2�"

264
Pma

j=1

jj�cjWq(�
c
j+1)��cj+1Wq(�

c
j)jj2

�cj+1�
c
j(�cj+1��cj)

+
Pna

i=1

(�viW(�vi+1)��vi+1W (�vi ))
2

�vi+1�
v
i (�vi+1��vi )

375
� max

1�na�N
max

1�ma�M
(na +ma)

�1 sup
(�c1;:::;�cma ;�

v
1 ;:::;�

v
na)2�cv;"

264
Pma

j=1

jj�cjWq(�
c
j+1)��cj+1Wq(�

c
j)jj2

�cj+1�
c
j(�cj+1��cj)

+
Pna

i=1

(�viW(�vi+1)��vi+1W (�vi ))
2

�vi+1�
v
i (�vi+1��vi )

375
For TP-5 to TP-7, the critical values of the limit distributions are available in Bai and

Perron (1998, 2003b) for N or M equal to 5. For TP-5 and TP-6, the results are valid

for martingale di¤erences or serially correlated errors. This is not the case for TP-7 and

TP-8 for reasons discussed above. We then consider the maximum of the Wald-type tests

discussed Section 4.2. The limit distribution applicable to TP-8 is new. Table 1 presents

critical values obtained using simulations as discussed above for the case of a �xed number

of breaks under H1, for " = 0:1; 0:15, and 0:20, and values of M and N up to 2; see Perron

and Yamamoto (2019b) for additional critical values with M;N = 2; 3; 4:

4.4 Testing for an additional break

We now consider TP-9 and TP-10, which assess whether including an additional break is

warranted. Let (eT c1 ; :::; eT cm; eT v1 ; :::; eT vn ) be the estimates of the break dates in � and �2 obtained
jointly by maximizing the quasi-likelihood function assuming m breaks in � and n breaks in

�2. For TP-9, the issue is whether an additional break in � is present. The test is

supSeq9;T (m+ 1; njm;n) = max
1�j�m+1

sup
�2�cj;"

log L̂T (eT c1 ; :::; eT cj�1; � ; eT cj ; :::; eT cm; eT v1 ; :::; eT vn )
� log L̂T (eT c1 ; :::; eT cm; eT v1 ; :::; eT vn )

where �cj;" = f� ; eT cj�1+ (eT cj � eT cj�1)" � � � eT cj � (eT cj � eT cj�1)"g. This amounts to performing
m + 1 tests for a single break in � for each of the m + 1 regimes de�ned by the partition

feT c1 ; :::; eT cmg. Note that there are di¤erent scenarios when allowing breaks in � and in �2 to
happen at di¤erent dates, since (eT c1 ; :::; eT cm) and (eT v1 ; :::; eT vn ) can partly or completely overlap
or be altogether di¤erent. This implies two possible cases: 1) if the n break dates in �2

are a subset of the m break dates in �, there is no variance break between eT cj�1 and eT cj ; 2)
otherwise, there is one or more variance breaks between eT cj�1 and eT cj . In either cases, one can
appeal to the results of Theorem 1(c) with ma = 1 since any value of na is allowed, including

0. It is then easy to deduce that, in the case of martingale errors, the limit distribution

of the test is, under Assumptions A2 and A3, limT!1 P (supSeq9;T (m+ 1; njm;n) � x) =
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Gq;" (x)
m+1, where Gq;" (x) is the cumulative distribution function of the random variable

sup�2�1;" jj (Wq (�)� �Wq (1))
2 jj=(� (1� �)), where �1;" = f�; " < � < 1 � "g. The critical

values of the distribution function Gq;" (x)
m+1 can be found in Bai and Perron (1998, 2003b).

With serial correlation in the errors, the principle is the same except that the statistic is

based on the robust Wald test supF3;T as de�ned by (13) applied for a one break test to each

segment. For TP-10, similar considerations apply. Here the issue is whether an additional

break in the variance is present. The test statistic is

supSeq10;T (m;n+ 1jm;n) = (2= ̂) max
1�i�n+1

sup
�2�vi;"

log L̂T (eT c1 ; :::; eT cm; eT v1 ; :::; eT vi�1; � ; eT vi ; :::; eT vm)
� log L̂T (eT c1 ; :::; eT cm; eT v1 ; :::; eT vn )

where �vi;" = f� ; eT vi�1 + (eT vi � eT vi�1)" � � � eT vi � (eT vi � eT vi�1)"g. The correction factor (2= ̂)
is needed to ensure that the limit distribution of the test is free of nuisance parameters when

the errors are allowed to be non-normal, serially correlated and conditionally heteroskedastic.

One can then use part (b) of Theorem 1 to deduce that, under A1 and A3 applied to each

segments under H0: limT!1 P (supSeq10;T (m;n+ 1jm;n) � x) = G1;" (x)
n+1.

4.5 Local asymptotic power

Supplement D contains details about the local asymptotic power function of selected tests.

We brie�y summarize the relevant results. We consider model (1) focusing on the case of

n = m = 1 with the following assumptions.

�Assumption L1: Assumptions A1 and A3 hold with �20 � �10 = ��=
p
T . We also

have T�1=2
P[Ts]

t=1 [(u
�
t )
2 � 1] )  W (s) with  = limT!1 var(T

�1=2PT
t=1[(u

�
t )
2 � 1]) and

T�1
P[Ts]

t=1(u
�
t )
2 p! s uniformly in s.

�Assumption L2: Assumptions A2 and A3 hold with �02 � �01 = ��=
p
T :

We derive the local asymptotic power of the tests supLR2;T (n = 1;m = 1; "jn = 0;m = 1)

and supLR3;T (m = 1; n = 1; "jm = 0; n = 1) and the corresponding tests with no nuisance

breaks accounted for, i.e., supLR1;T and the standard supLRT test. Lemma S.1 shows that

the local asymptotic power of the supLR2;T test coincides with that of supLR1;T except

that the set of permissible break dates �cv;� is smaller than �v;�, which has no practical

e¤ect. Lemma S.2 shows that the local asymptotic power of the supLR3;T is the same

as that of supLRT derived in Andrews (1993, Theorem 4), again except that the set of

permissible break dates is �vc;� instead of �c;�. Hence, when testing for changes in variance

(resp., coe¢ cients) allowing for changes in coe¢ cients (resp., variance), we have the same
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local asymptotic poser function as when testing for changes in variance (resp., coe¢ cients)

when no change in coe¢ cient (resp., variance) is present. Hence, there is no loss in local

asymptotic power adopting our more general approach.

We also derived the local asymptotic power function of the CUSQ test (see (14) below

for its de�nition) and compared it to that of the supLR1;T and supLR2;T tests. Figure S.1

shows the asymptotic local power functions of the supLR1;T and CUSQ tests when a break

in variance occurs at �v0 = 0:3; 0:5 and 0:7 and no break occurs in the coe¢ cients. They

show the local asymptotic power functions to be almost identical. Figure S.2 presents the

local asymptotic power functions of the supLR2;T test when it accounts for a coe¢ cient

break at �c0 = 0:3; 0:5 or 0:7. It also shows, the local asymptotic power functions of the

CUSQ test under the assumption of no break in the coe¢ cients. This simulation design

gives an advantage to the CUSQ. Indeed, the power of the supLR2;T test is slightly lower

when the variance and the coe¢ cient break dates coincide. This is because the permissible

break dates around the true break date are not considered due to the concurrent nuisance

break. However, the power loss of the supLR2;T test is very minor. The power of both tests

are almost identical even though the supLR2;T test considers a single nuisance break when

the two breaks are far apart. i.e., the case of (�v0; �c0) = (0:3; 0:7) and (0:7; 0:3).

5 Monte Carlo experiments

We provide simulation results to assess the size and power properties of some tests proposed;

Section 5.1 for variance breaks, 5.2 for conditional tests, 5.3 for the supLR�4;T and UDmax

tests. Supplement E provides additional results for the supLR1;T and supLR2;T tests with

non-normal errors. Following Bai and Ng (2005), we use: (a) the t distribution with 5 degrees

of freedom, (b) a mixture of two normal distributions: v1I(z � 0:5) + v2I(z > 0:5), where

z � U [0; 1], v1 � N(�1; 1) and v2 � N(1; 1) (c) the �2 distribution with 5 degrees of freedom

and (d) an exponential distribution � ln(v), v � U [0; 1]. The results show that the exact

size of the tests is similarly close to the nominal size. As expected, power is lower for all

distributions, though the extent of the power loss is minor and the tests remain informative.

Our tests for changes in variance retain their power advantage over the CUSQ test.

5.1 Testing for variance breaks only

We now consider the case of testing only for variance breaks assuming no change in �. We

investigate the properties of the following tests: the supLR�1;T (na; "jm = n = 0), abbreviated
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supLR�1;T (na; ") and the UDmaxLR1;T for an unknown number of breaks up to N = 5. We

also consider a corrected version of the CUSUM of squares test of Brown, Durbin and Evans

(1975), as extended by Deng and Perron (2008), given by

CUSQ = sup�2[0;1] jT�1=2[
P[T�]

t=1 ev2t � ([T�] =T )PT
t=1 ev2t ]j='̂1=2a (14)

with '̂a = T�1
P(T�1)

j=�(T�1) ! (j; bT )
PT

t=jjj+1 �̂t�̂t�j, where �̂t = ev2t � �̂, �̂2 = T�1
PT

t=1 ev2t andevt denotes the recursive residuals. Also ! (j; bT ) is the Quadratic Spectral kernel and the
bandwidth bT is selected using Andrews�(1991) method with an AR(1) approximation. The

aim of the design is to address the following issues: a) the size of the supLR�1;T (na; ") and

UDmaxLR1;T tests; b) the relative power of the three tests; c) the power losses obtained

when under-specifying the number of breaks; d) the relative power of the UDmaxLR1;T
compared to supLR�1;T (na; ") with na speci�ed to be the true number of breaks. We consider

a dynamic model with GARCH errors, for which the DGP is given by yt = c + �yt�1 + et,

et = ut
p
ht; ut � i:i:d: N(0; 1), ht = � 1 + � 21 (t > [:5T ]) + 
e2t�1 + �ht�1, where we set

h0 = � 1= (1� 
 � �), c = 0:5, � 1 = 0:1, and " = 0:15. We consider � = 0:2, 0:7 and the

GARCH(1,1) coe¢ cients are set to 
 = 0:1, 0:3, 0:5 and � = 0:2: The size and power of 5%

nominal size tests are evaluated at T = 100; 200. The magnitude of the change � 2 varies

between 0 (size) and 0:3. The results are presented in Table 2. The supLR�1;T (1; ") and

UDmaxLR1;T tests show size distortions when 
 = 0:5 with T = 100 but the size is close

to 5% when T = 200. The CUSQ test is slightly undersized. The UDmaxLR1;T test has

power close to that of supLR�1;T (1; "), despite having a broader range of alternatives. The

power of the latter two tests dominates that of CUSQ especially when T = 100. Supplement

F shows the results to be robust for a static mean model with normal errors.

We now turn to a case with two breaks in variance. The DGP is yt = et; et � i:i:d:

N(0; 1 + �1(T v1 < t � T v2 )), i.e., the variance increases at T
v
1 and returns to its original level

at T v2 . We consider two scenarios: fT v1 = [:3T ], T v2 = [:6T ]g and fT v1 = [:2T ], T v2 = [:8T ]g.
We set T = 200 and " = 0:10, 0:15. The magnitude of the break in �2 varies between

� = 0 (size) and � = 3. We again consider the UDmaxLR1;T test with N = 5 but include

both the supLR�1;T (1; ") test for a single break and the supLR
�
1;T (2; ") test for two breaks to

assess the extent of power gains when specifying the correct number of breaks. The results are

presented in Table 3. Consider �rst the size of the tests. The supLR�1;T (1; "), supLR
�
1;T (2; ")

and UDmaxLR1;T are slightly conservative and the CUSQ even more so with an exact size

of 0.025. As expected, power increases as " increases since the range of alternatives is

smaller. When comparing the supLR�1;T (1; ") and supLR
�
1;T (2; ") tests, the latter is more
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powerful, indicating that allowing for the correct number of breaks improves power. The

UDmaxLR1;T has power between those of the supLR�1;T (1; ") and supLR
�
1;T (2; ") tests.

These tests are considerably more powerful than the CUSQ, which has little power.

5.2 Conditional tests

We now consider the properties of the tests that condition on either breaks in coe¢ cients

(resp., variance) when testing for changes in variance (resp., coe¢ cients). Consider �rst the

size and power of supLR�2;T (ma; na; "jn = 0;ma) which tests for na changes in �2 conditional

on ma changes in � with " = 0:1; 0:2. We set ma = na = 1 and the DGP is a simple mean

shift model with a change of magnitude �2 at mid-sample with i:i:d: normal errors having

a change in variance of magnitude � (under H1) that occurs at [0:25T ]. The results for size

are presented in Table 4. The test is slightly conservative and more so as the trimming is

larger. This is due to the fact that the limit distribution used is an upper bound. The results

for power are presented in Table 5. It increases rapidly with the magnitude of the variance

break � and with T . It also marginally increases with the value of the trimming ".

We next investigate the size and power of supLR�3;T (ma; na; "jm = 0; na) which tests for

ma changes in � conditional on na changes in �2 with " = 0:1; 0:2. We again set ma =

na = 1 and consider the mean model in which �2 changes at mid-sample. We also consider

an AR(1) model yt = c + �yt�1 + et with c = 0:5; � = 0:5 and et being i:i:d: normal

errors having a change in variance at [0:5T ] with magnitude �. This is done to investigate

potential size distortions due to large variance changes. As discussed in Section 4.1, a

change in variance induces a change in the marginal distribution of the regressors when

lagged dependent variables are included. The results for the size of the tests are presented in

Table 6. The size under the mean model is close to the nominal level but the test becomes

conservative as " increases since the limiting distribution used is a bound. The size under the

AR(1) model is very similar with the distortions being even smaller. This indicates that the

shrinking variance assumption is not binding. The results for power are presented in Table

7 for the mean model with a coe¢ cient change at [0:25T ]. The power quickly increases as

the break magnitude � and T increase. The power again marginally increases with ".

5.3 Size and power of the supLR�4;T and UDmaxLR4;T tests

We now consider the supLR�4;T and UDmaxLR4;T (simply labelled UDmax) tests. To this

end, we use a model with GARCH(1,1) errors so that the DGP is yt = et with et = ut
p
ht;

where ut � i:i:d: N(0; 1), ht = � 1 + 
e
2
t�1 + �ht�1, h0 = � 1= (1� 
 � �), � 1 = 1, � = 0:2 and
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 takes values 0:1, 0:3, 0:5. Also, " = 0:1, 0:2. For the UDmax test, M = N = 2 and for the

supLR�4;T test, we consider the following combinations: a) ma = na = 1, b) ma = 1, na = 2,

c) ma = 2, na = 1. We set T = 100, 200. The results, presented in Table 8, show that the

size is close to or slightly lower than the nominal 5% level (some cases have slight liberal size

distortions when T = 100, which, however, decrease when T = 200). Supplement G shows

that the tests have good sizes with i.i.d. normal errors.

We now consider the power of these tests. Since some partial results for the one break

case are available in Tables S.6-S.7 for the supLR�4;T test, we concentrate on the case with

a di¤erent number of breaks in coe¢ cients and in variance. We also only consider i.i.d.

normal errors though the hybrid-type correction is still applied. Table 9 presents the results

for the case with one break in coe¢ cient and two breaks in variance, in which case the DGP

is yt = �1 + �21(t > T c) + et, et � i:i:d: N(0; 1 + �1(T v1 < t � T v2 )) with �1 = 0, �2 = �

and " = 0:1. Five di¤erent con�gurations of break dates are considered. We analyze two

forms of the supLR�4;T test: a) one testing for a single break in both mean and variance, b)

one correctly testing for two changes in variance and one change in mean. This is done to

investigate the extent of the power di¤erences when underspecifying the number of breaks.

As expected, the power increases rapidly with � and with T . With the DGP used, the power

is similar whether accounting for one or (correctly) two breaks in variance and the power of

the UDmax test is also similar to the power of both versions of the supLR�4;T test. This

may, however, be DGP speci�c. Table 10 presents the results for the case with two breaks in

coe¢ cient and one break in variance, with the DGP given by yt = �1+�21(T
c
1 < t � T c2 )+et,

et � i:i:d: N(0; 1 + �1(t > T v)) with �1 = 0 and �2 = �. Again, we consider two forms of

the supLR�4;T test: one testing for a single break in both mean and variance, one correctly

testing for two changes in mean and one change in variance. Table 10 shows that for given

values of � and T , the power is lower than with one break in coe¢ cient and two breaks in

variance. Also, the UDmax test now has power between that of the test correctly specifying

the type and number of breaks and that underspecifying the number of changes in mean.

The di¤erence can be substantial and, as in Bai and Perron (2006), the power of the UDmax

test is close to that attainable when the type and number of breaks is correctly speci�ed

6 Estimating the numbers of breaks in coe¢ cients and in variance

To select the number of breaks in regression coe¢ cients or error variance, we suggest a

speci�c to general procedure that uses the sequential tests proposed in Section 4.4. We

determine the number of coe¢ cients and variance breaks allowing for a given number of
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breaks in the other component. When selecting the number of breaks in �, we consider

TP-9 and the test supSeq9;T (m + 1; N jm;N) is applied, starting with H0 : m = 0 and

H1 : m = 1, where N is some pre-speci�ed maximum number of breaks in variance. Upon

a rejection, we proceed to H0 : m = 1 versus H1 : m = 2, and so on until the test stops

rejecting. Since the number of breaks n in �2 is unknown, contamination of the test statistics

by unaccounted breaks in �2 must be avoided. This can be achieved imposing a maximum

number N throughout. Similarly, to select the number of breaks in �2, TP-10 is considered

and the test supSeq10;T (M;n+ 1jM;n) is used for n = 0; 1; :::, until a non-rejection occurs.

Again, some maximum number of breaks in the coe¢ cients M is imposed. We performed a

simple simulation experiment with T = 200, " = 0:15 and the DGP given by:

yt = �1 + �21(t > T c) + et; et � i:i:d: N(0; 1 + �1(t > T v));

with �1 = 0 so that at most one break in either mean or variance occurs. We consider the

following scenarios: a) no change in mean or variance, b) a change in mean only occurring

at mid-sample, c) a change in variance only occurring at mid-sample, d) a change in both

mean and variance occurring at a common date (mid-sample); e) a change in both mean and

variance occurring at di¤erent but close dates (T c = [0:5T ]; T v = [0:7T ]) or f) at di¤erent and

distant dates (T c = [0:25T ]; T v = [0:75T ]). Di¤erent magnitudes of breaks are considered.

The procedure is applied setting the maximum number of breaks to M = 2 and N = 2 (i.e.,

four breaks overall). We also considered a split-sample method discussed in Supplement H.

The results are presented in Tables 11 and S.4. The procedures work quite well in selecting

the correct number and type of breaks. There are cases, however, where the probability of

correct selection is quite low with the split-sample method, e.g., when both changes in mean

and variance are not large and occur at di¤erent dates, especially far apart. The speci�c to

general approach tests for breaks in coe¢ cients and variance separately allowing the other

component to have unknown breaks, which can avoid segmentations and lead to power gains.

The probabilities of selecting the correct number of each type of breaks are high with this

approach (higher than with the split-sample method, see Table S.10) when the changes are

not large and the break dates are di¤erent. Hence, we recommend this procedure in practice.

7 Empirical examples

We investigate structural changes in the conditional mean and in the error variance of US

in�ation, quarterly from 1959:1 to 2018:4. For comparison purposes, we use Stock and Wat-

son�s (2002) transformation to achieve stationarity, i.e., we transform the GDP de�ator (Xt)
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into annual changes of the quarterly in�ation rate as Yt = 100[ln(Xt=Xt�1)� ln(Xt�4=Xt�5)].

The resulting series is presented in Figure 1. We use a simple AR(4) model of the form

Yt = �+
P4

j=1 �jYt�j+et. Using the sample from 1959:1 to 2002:3 and a two-step procedure,

Stock and Watson (2002) found strong evidence of a structural change in the conditional

mean but no or weak evidence of changes in the error variance. Table 12(a) reports the

supLR4;T and the UDmaxLR4;T tests. They suggest at least one change in either or both

the coe¢ cients and the variance. Table 12(b) presents the results when testing for changes

in the coe¢ cients, allowing for changes in the variance. As in Stock and Watson (2002),

we obtain strong evidence of a change in the conditional mean coe¢ cients if we assume no

change in the error variance (supLR3;T with ma = 1 and UDmaxLR3;T tests, both with

na = 0). The sequential procedure using the supSeq9;T test con�rms that a one break spec-

i�cation is preferred with the break date estimated at 1982:1. However, any evidence of

changes in the conditional mean disappears once we jointly consider structural changes in

the error variance. To assess whether changes in variance are indeed present when account-

ing for potential changes in the regression coe¢ cients, Table 12(c) presents the results of the

supLR2;T and the UDmaxLR2;T tests. These suggest the presence of breaks in the vari-

ance. The sequential test supSeq10;T suggests 3 breaks at 1971:2, 1983:2 and 2006:3 when

ma = 0. Hence, contrary to Stock and Watson (2002), we conclude for 3 structural changes

in the error variance and no change in the conditional mean. The changes are such that the

variance went from 1.00 to 3.29 in 1971:2, then to 0.49 in 1983:1 and to 1.42 in 2006:3.

We now consider the US ex-post real interest rate and use the same quarterly series from

1961:1-1986:3 (see Figure 2), as in Garcia and Perron (1996) and Bai and Perron (2003a)

since it is a widely used example involving important mean shifts, though variance shifts

have not been investigated. We use a model with only a constant as regressor (i.e., zt = f1g)
and account for serial correlations in the errors term via a HAC variance estimator using the

hybrid method. The estimate of the scaling factor  , see (8), also uses the hybrid method.

Bai and Perron (2003a) found two large mean shifts in 1972:3 and 1980:3 and a small change

in 1966:4 using the sequential procedure proposed in Bai and Perron (1998, 2003a), which

allows for variance breaks occurring at the same time as the mean breaks, though not at

di¤erent times. Here, the focus is on assessing whether changes in variances are present and if

so whether and how the changes in mean present a¤ect the results. Because they found three

breaks in the mean, we use our tests withma up to 3 and na up to 2. The trimming parameter

" = 0:15 is used. The critical values of both tests when M = 3 are provided in Perron and

Yamamoto (2019b). Table 13(a) presents the results for the supLR4;T and the UDmaxLR4;T
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tests, which suggest clear rejections of the null hypothesis of no breaks. Table 13(b) presents

the results when testing for mean breaks accounting for possible variance breaks using the

supLR3;T and the UDmaxLR3;T tests and also the supSeq9;T test to determine the number

of breaks. We obtain evidence for two mean breaks in 1972:3 and 1980:3, irrespective of how

many variance breaks are accounted for. However, we do not �nd evidence for a mean break

in 1966:4. To investigate the presence of variance changes, Table 13(c) presents the results of

the tests for variance breaks accounting for mean breaks. If we account for no mean breaks

(ma = 0), two variance breaks are found in 1972:3 and 1981:2; the former is the same and

the latter is close to the dates of the two large mean breaks. However, if one mean break

is allowed (ma = 1), only one variance break is found in 1972:3, which suggests that the

variance break in 1981:2 was a false rejection due to the ignored mean break. The next issue

is whether the 1972:3 variance break is spurious. To see this, we account for two breaks in

the mean (ma = 2) and �nd again two breaks in the variance; one in 1972:3 and the other is

in 1964:3. The variance break in 1964:3 is relatively small and was thereby masked when the

two mean breaks were not accounted for. More importantly, we again obtain no evidence

for a break around 1980:3 but rather one in 1972:3. Therefore, we conclude that both the

mean and the variance changed in 1972:3 but only the mean changed in 1980:3, while only

the variance changed in 1964:3. This latter change may be responsible for Bai and Perron�s

(2003a) �nding of an additional mean break in 1966:4 using tests that allow for variance

changes, though at the same dates as the mean changes. The change are such that the mean

went from 1.36 to -1.80 in 1972:3 and to 5.64 in 1980:3, while the variance changed from

1.09 to 1.87 in 1964:3 and then to 6.91 in 1972:3.

8 Conclusion

This paper provided tools for testing for multiple structural breaks in the error variance

in the linear regression model with or without the presence of breaks in the regression

coe¢ cients. An innovation is that we do not impose any restrictions on the break dates,

i.e., the breaks in the regression coe¢ cients and in the variance can happen at the same

time or at di¤erent times. We proposed statistics with asymptotic distributions invariant

to nuisance parameters and valid with non-normal errors and conditional heteroskedasticity,

as well as serial correlation. Extensive simulations of the �nite sample properties show that

our procedures perform well in terms of size and power. A speci�c to general procedure to

estimate the number and type of breaks based on a proposed sequential test is shown to

perform well in selecting the number and types of breaks.
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Appendix

Proof of Theorem 1: Part (a) follows from Qu and Perron (2007a, Theorem 5) under A1.
For part (b),

supLR2;T (ma; na; "jn = 0;ma)

= 2[log L̂T (eT c1 ; :::; eT cma
; eT v1 ; :::; eT vna)� log eLT (T̂ c1 ; :::; T̂ cma

)]

= T log e�2 �Pna+1
i=1 (

eT vi � eT vi�1) log �̂2i
=

Pna
i=1[

eT vi+1 log e�21;i+1 � eT vi log e�21;i � (eT vi+1 � eT vi ) log �̂2i+1] + eT v1 (log e�21;1 � log �̂21)
where e�21;i = (eT vi )�1PeT vi

t=1(yt�x0te��z0te�t;j)2 with e�t;j = e�j for T̂ cj�1 < t � T̂ cj (also let �
0
t;j = �0j

for T c0j�1 < t � T c0j ) (j = 1; :::;ma + 1) and �̂
2
i = (

eT vi � eT vi�1)�1PeT vi
t= eT vi�1+1(yt � x0t�̂ � z0t�̂t;j)

2.

Applying a Taylor expansion to log e�21;i+1, log e�21;i and log �̂2i+1 around log �20, we obtain
supLR2;T (ma; na; "jn = 0;ma) =

Pna
i=1(F

i
1;T + F i

2;T ) + op(1)

where

F i
1;T = (�20)

�1[eT vi+1e�21;i+1 � eT vi e�21;i � (eT vi+1 � eT vi )�̂2i+1]
= (�20)

�1PeT vi+1
t=eT vi +1

h
(yt � x0t

e� � z0t
e�t;j)2 � (yt � x0t�̂ � z0t�̂t;j)

2
i

and

F i
2;T = �(1=2)[eT vi+1(e�21;i+1 � �20

�20
)2 � eT vi (e�21;i � �20

�20
)2 � (eT vi+1 � eT vi )( �̂2i+1 � �20

�20
)2]

= (1=2)(I + II + III): (A.1)

We �rst show that F i
1;T = op (1). We can express F i

1;T as

(�20)
�1

26666664
(Ui+1 +Xi+1(�

0 � e�)
+Zi+1(�

0
t;j � e�t;j))0(Ui+1 +Xi+1(�

0 � e�) + Zi+1(�
0
t;j � e�t;j))

�(Ui+1 +Xi+1(�
0 � �̂)

+Zi+1(�
0
t;j � �̂t;j))

0(Ui+1 +Xi+1(�
0 � �̂) + Zi+1(�

0
t;j � �̂t;j))

37777775

= (�20)
�1

26666664
(�̂ � e�)0X 0

i+1Xi+1(�̂ � e�) + (�̂t;j � e�t;j)0Z 0i+1Zi+1(�̂t;j � e�t;j)
+(�̂ � e�)0X 0

i+1Zi+1(�̂t;j � e�t;j) + 2(� � �̂)0X 0
i+1Xi+1(�̂ � e�)

+2(�0t;j � �̂t;j)
0Z 0i+1Zi+1(�̂t;j � e�t;j) + 2(�̂ � e�)0X 0

i+1Zi+1(�
0
t;j � �̂t;j)

+2(� � �̂)0X 0
i+1Zi+1(�̂t;j � e�t;j) + 2(�̂ � e�)0X 0

i+1Ui+1 + 2(�̂t;j � e�t;j)0Z 0i+1Ui+1

37777775 :
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The result follows using the facts that X 0
i+1Xi+1 = Op(T ), Z 0i+1Zi+1 = Op(T ), X 0

i+1Zi+1 =

Op(T ), X 0
i+1Ui+1 = Op(T

1=2) and Z 0i+1Ui+1 = Op(T
1=2). Also, since under H0 with A1,

the estimates of the break fractions converge to the true break fractions at a fast enough
rate so that the estimates of the parameters of the models are consistent and have the
same limit distribution as when the break dates are known, we have: �0 � �̂ = Op(T

�1=2),
�0t;j � �̂t;j = Op(T

�1=2), �̂� e� = op(T
�1=2) and �̂t;j �e�t;j = op(T

�1=2). The last two quantities

are op(T�1=2) since
p
T (�̂ � �0) and

p
T (e� � �0) have the same limit distribution under H0,

and likewise for
p
T (�̂t;j � �0t;j) and

p
T (e�t;j � �0t;j). For F

i
2;T ,

p
I = (eT vi+1)�1=2PeT vi+1

t=1 [f(yt � x0t
e� � z0t

e�t;j)=�0g2 � 1] = (eT vi+1)�1=2PeT vi+1
t=1

�
(ut=�0)

2 � 1
�
+ op(1)

)
p
 W (�vi+1)=

q
�vi+1

by A1. Similarly,
p
II )

p
 W (�vi )=

p
�vi and

p
III = [(eT vi+1 � eT vi )=T ]�1=2T�1=2PT vi+1

t=T vi +1
[(ut=�0)

2 � 1] + op(1)

= [(eT vi+1 � eT vi )=T ]�1=2fT�1=2PT vi+1
t=1 [(ut=�0)

2 � 1]� T�1=2
PT vi

t=1[(ut=�0)
2 � 1]g+ op(1)

)
p
 [W (�vi+1)�W (�vi )]=

q
�vi+1 � �vi :

Therefore,

F i
2;T ) �( =2)

�
W 2(�vi+1)

�vi+1
� W 2(�vi )

�vi
�
(W (�vi+1)�W (�vi ))

2

�vi+1 � �vi

�
= ( =2)

(�viW (�
v
i+1)� �vi+1W (�

v
i ))

2

�vi+1�
v
i (�

v
i+1 � �vi )

:

This yields

supLR2;T (ma; na; "jn = 0;ma) ) sup
(�v1 ;:::;�

v
na
)2�cv;"

naP
i=1 2

(�viW (�
v
i+1)� �vi+1W (�

v
i ))

2

�vi+1�
v
i (�

v
i+1 � �vi )

� sup
(�v1 ;:::;�

v
na
)2�v;"

naP
i=1 2

(�viW (�
v
i+1)� �vi+1W (�

v
i ))

2

�vi+1�
v
i (�

v
i+1 � �vi )

because �cv;" � �v;". For part (c),

supLR3;T (ma; na; "jm = 0; na)

= 2[log L̂T (eT c1 ; :::; eT cma
; eT v1 ; :::; eT vna)� log eLT (T̂ v1 ; :::; T̂ vna)]

=
Pna+1

i=1 (T̂
v
i � T̂ vi�1) log e�2i �Pna+1

i=1 (
eT vi � eT vi�1) log �̂2i

where e�2i = (T̂ vi � T̂ vi�1)�1PT̂ vi
t=T̂ vi�1+1

(yt � x0te� � z0te�)2 and �̂2i = (eT vi � eT vi�1)�1PeT vi
t=eT vi�1+1(yt �

x0t�̂ � z0t�̂t;j)
2. Applying a Taylor expansion on log e�2i and log �̂2i around log �2i0, we obtain
supLR3;T (ma; na; "jm = 0; na) =

Pna+1
i=1 (F

i
1;T + F i

2;T ) + op(1)
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where F i
1;T = (T̂

v
i � T̂ vi�1)(e�2i =�2i0)� (eT vi � eT vi�1)(�̂2i =�2i0) and

F i
2;T = �(1=2)[(T̂ vi � T̂ vi�1)([e�2i � �2i0]=�

2
i0)

2 � (eT vi � eT vi�1)([�̂2i � �2i0]=�
2
i0)

2]:

We �rst show that F i
2;T = op (1) as follows. We have:

F i
2;T = �(1=2)[(T̂ vi � T̂ vi�1)(

e�2i � �2i0
�2i0

)2 � (eT vi � eT vi�1)( �̂2i � �2i0
�2i0

)2]

= �(1=2)[T�1(T̂ vi � T̂ vi�1)[T
1=2(

e�2i � �2i0
�2i0

)]2 � T�1(eT vi � eT vi�1)[T 1=2( �̂2i � �2i0
�2i0

)]2]

where [(T̂ vi � T̂ vi�1)=T ][
p
T (e�2i � �2i0)=�

2
i0]
2 and [(eT vi � eT vi�1)=T ][pT (�̂2i � �2i0)=�

2
i0]
2 have the

same limit distribution under A3. For F i
1;T , let �0 = �10 without loss of generality, thenPna+1

i=1 F i
1;T = (�20)

�1Pna+1
i=1

h
(T̂ vi � T̂ vi�1)e�2i � (eT vi � eT vi�1)�̂2i i

+(�20)
�1Pna+1

i=1 ([�
2
i0 � �20]=�

2
i0)
h
(T̂ vi � T̂ vi�1)e�2i � (eT vi � eT vi�1)�̂2i i :

The �rst term becomes,

(�20)
�1Pna+1

i=1

h
(T̂ vi � T̂ vi�1)e�2i � (eT vi � eT vi�1)�̂2i i

= (�20)
�1PT

t=1[(yt � x0t
e� � z0t

e�)2 � (yt � x0t�̂ � z0t�̂t;j)
2] (A.2)

= (�20)
�1Pma

j=1

PeT cj+1
t=1 (yt � x0t

e� � z0t
e�)2 �PeT cj

t=1(yt � x0t
e� � z0t

e�)2 �PeT cj+1
t=eT cj+1(yt � x0t�̂ � z0t�̂j+1)

2

+(�20)
�1PeT c1

t=1(yt � x0t
e� � z0t

e�)2 � (�20)�1PeT c1
t=1(yt � x0t�̂ � z0t�̂1)

2

= (�20)
�1f
Pma

j=1 [D
r(1; j + 1)�Dr(1; j)�Du(j + 1)] +Dr(1; 1)�Du(1)g;

where Dr(1; j) =
PeT cj

t=1(yt�x0te��z0te�)2 and Du(j) =
PeT cj

t=eT cj�1+1(yt�x0t�̂�z0t�̂j)2. The second
term is op(1) by A3. Using similar derivations as in Qu and Perron (2007b), we obtain

Dr(1; j + 1)�Dr(1; j)�Du(j + 1)

= �U 01:j+1Z1:j+1(Z 01:j+1Z1:j+1)�1Z 01:j+1U1:j+1 + U 01:jZ1:j(Z
0
1:jZ1:j)

�1Z 01:jU1:j

+U 0j+1Zj+1(Z
0
j+1Zj+1)

�1Z 0j+1Uj+1 + op(1);

)


�cjWq(�

c
j+1)� �cj+1Wq(�

c
j)


2

�cj+1�
c
j(�

c
j+1 � �cj)

by A2. This yields

supLR3;T (ma; na; "jm = 0; na) ) sup
(�c1;:::;�

c
ma
)2�vc;"

maX
j=1



�cjWq(�
c
j+1)� �cj+1Wq(�

c
j)


2

�cj+1�
c
j(�

c
j+1 � �cj)

;

� sup
(�c1;:::;�

c
ma
)2�c;"

maX
j=1



�cjWq(�
c
j+1)� �cj+1Wq(�

c
j)


2

�cj+1�
c
j(�

c
j+1 � �cj)

;
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because �vc;" � �c;". For part (d), we have:

supLR4;T (ma; na; "jm = n = 0)

= 2[ sup
(�c1;:::;�cma ;�

v
1 ;:::;�

v
na)2�"

log L̂T
�
T c1 ; :::; T

c
ma
;T v1 ; :::; T

v
na

�
� log eLT ]

= 2
h
log L̂T (eT c1 ; :::; eT cma

; eT v1 ; :::; eT vna)� log eLTi
= T log e�2 �Pna+1

i=1 (
eT vi � eT vi�1) log �̂2i

=
Pna

i=1

h eT vi+1 log e�21;i+1 � eT vi log e�21;i � (eT vi+1 � eT vi ) log �̂2i+1i+ eT v1 (log e�21;1 � log �̂21);
where e�21;i = (eT vi )�1PeT vi

t=1(yt� x0te�� z0te�)2: Applying a Taylor expansion to log e�21;i+1, log e�21;i
and log �̂2i+1 around log �

2
0, we obtain

supLR4;T (ma; na; "jm = n = 0) =
Pna

i=1(F
i
1;T + F i

2;T ) + op (1)

where the �rst term is the same as in (A.2), so thatPna
i=1 F

i
1;T =

Pna
i=1(�

2
0)
�1
h eT vi+1e�21;i+1 � eT vi e�21;i � �eT vi+1 � eT vi � �̂2i+1i+ (�20)�1 eT v1 (e�21;1 � �̂21)

= (�20)
�1PT

t=1

��
yt � x0t

e� � z0t
e��2 � �yt � x0t�̂ � z0t�̂t;j

�2�
= (�20)

�1f
Pma

j=1 [D
r(1; j + 1)�Dr(1; j)�Du(j + 1)] +Dr(1; 1)�Du(1)g

as shown in part (c). The second term is the same as (A.1) but with no changes in � to
construct e�21;i, i.e., LRv de�ned by (11). Hence,

F i
2;T = �(1=2)[eT vi+1(e�21;i+1 � �20

�20
)2 � eT vi (e�21;i � �20

�20
)2 �

�eT vi+1 � eT vi � ( �̂2i+1 � �20
�20

)2]

as shown in part (b). From the proof of part (c),

Pna
i=1 F

i
1;T )

Pma

j=1

jj�cjWq

�
�cj+1

�
� �cj+1Wq

�
�cj
�
jj2

�cj+1�
c
j

�
�cj+1 � �cj

�
under A2 and from that of part (b),

F i
2;T )

 

2

�
�viW

�
�vi+1

�
� �vi+1W (�vi )

�2
�vi+1�

v
i

�
�vi+1 � �vi

�
under A1. Hence, we obtain

supLR4;T (ma; na; "jm = n = 0)) sup
(�c1;:::;�cma ;�

v
1 ;:::;�

v
na)2�"

264
Pma

j=1

jj�cjWq(�cj+1)��cj+1Wq(�cj)jj2

�cj+1�
c
j(�cj+1��cj)

+ 
2

Pna
i=1

(�viW(�vi+1)��vi+1W (�vi ))
2

�vi+1�
v
i (�vi+1��vi )
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Table 1: Asympotic critical values of the upper bound of the sup LR∗4,T test

(the entries are quantiles x such that P
¡
(na +ma)

−1 supLR∗4 ≤ x
¢
≥ α)

ε = 0.10 ε = 0.15 ε = 0.20 ε = 0.25 UDmaxLR∗4
na= 1 na= 2 na= 1 na= 2 na= 1 na= 2 na= 1 M = N = 2

q α ma= 1 ma= 2 ma= 1 ma= 2 ma= 1 ma= 2 ma= 1 ma= 2 ma= 1 ma= 2 ma= 1 ma= 1 ε = 0.10 ε = 0.15 ε = 0.20
1 .90 6.59 6.34 6.32 6.20 6.21 5.75 5.72 5.46 5.83 5.19 5.18 5.48 7.18 6.61 6.15

.95 7.63 7.12 7.10 6.83 7.18 6.49 6.46 6.13 6.79 5.93 5.89 6.43 8.03 7.51 7.05

.975 8.54 7.78 7.75 7.44 8.12 7.17 7.23 6.71 7.70 6.56 6.70 7.42 8.81 8.32 7.87

.99 9.79 8.73 8.70 8.17 9.24 7.98 8.00 7.45 8.83 7.42 7.52 8.56 10.00 9.42 8.95

2 .90 7.88 7.96 7.18 7.41 7.45 7.31 6.54 6.66 7.10 6.72 6.01 6.70 8.47 7.93 7.39

.95 8.87 8.78 7.94 8.03 8.45 8.12 7.36 7.33 8.12 7.52 6.77 7.72 9.37 8.88 8.42

.975 9.85 9.52 8.69 8.69 9.45 8.91 8.02 7.88 9.08 8.34 7.50 8.69 10.32 9.77 9.40

.99 11.12 10.55 9.52 9.52 10.73 9.90 8.93 8.73 10.27 9.31 8.33 9.94 11.47 10.96 10.54

3 .90 8.98 9.34 7.93 8.44 8.53 8.63 7.30 7.63 8.09 7.94 6.70 7.67 9.73 9.09 8.55

.95 10.06 10.23 8.72 9.11 9.52 9.51 8.07 8.31 9.11 8.77 7.50 8.75 10.66 10.08 9.48

.975 11.08 10.98 9.43 9.75 10.61 10.30 8.80 8.98 10.18 9.59 8.25 9.73 11.48 10.93 10.41

.99 12.43 12.01 10.33 10.53 11.87 11.30 9.67 9.80 11.50 10.50 9.09 10.89 12.66 12.19 11.64

4 .90 9.96 10.60 8.54 9.32 9.51 9.90 7.87 8.56 9.09 9.17 7.31 8.66 10.88 10.24 9.64

.95 11.10 11.51 9.38 10.05 10.54 10.83 8.73 9.30 10.14 10.01 8.14 9.73 11.85 11.19 10.66

.975 12.17 12.30 10.13 10.72 11.61 11.62 9.47 9.98 11.17 10.89 8.91 10.87 12.81 12.20 11.53

.99 13.50 13.36 11.07 11.59 13.08 12.62 10.42 10.73 12.67 11.90 9.76 12.33 13.99 13.39 12.84

5 .90 10.94 11.81 9.19 10.21 10.45 11.03 8.53 9.41 9.99 10.36 7.94 9.56 12.07 11.33 10.70

.95 12.14 12.76 10.00 10.99 11.66 12.01 9.33 10.13 11.20 11.33 8.75 10.73 13.06 12.38 11.84

.975 13.22 13.68 10.74 11.63 12.72 12.89 10.09 10.82 12.28 12.22 9.54 11.93 13.99 13.38 12.86

.99 14.47 14.66 11.77 12.50 14.06 14.13 11.15 11.67 13.56 13.29 10.52 13.23 15.16 14.50 13.95



Table 2: Size and power of the sup LR∗1,T (na = 1, ε), UDmaxLR1,T and CUSQ tests in a dynamic model with GARCH(1,1) errors

(DGP: yt = c+ αyt−1 + et, et = ut
√
ht, with ut ∼ i.i.d. N(0, 1), ht = τ1 + τ21 (t > [0.5T ]) + γe2t−1 + ρht−1, h0 = τ1/ (1− γ − ρ), c = 0.5, τ1 = 0.1,

ρ = 0.2; ε = 0.15).

T = 100
α = 0.2 α = 0.7

γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.1 γ = 0.3 γ = 0.5
τ2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0.059 0.059 0.029 0.083 0.086 0.039 0.098 0.099 0.042 0.066 0.061 0.029 0.078 0.084 0.038 0.097 0.092 0.039

0.05 0.171 0.167 0.158 0.165 0.171 0.103 0.151 0.155 0.082 0.164 0.158 0.149 0.147 0.149 0.100 0.137 0.140 0.080

0.1 0.396 0.373 0.354 0.307 0.307 0.232 0.224 0.228 0.136 0.383 0.367 0.356 0.300 0.297 0.232 0.218 0.224 0.138

0.15 0.593 0.575 0.574 0.432 0.409 0.349 0.312 0.312 0.199 0.591 0.573 0.564 0.425 0.414 0.330 0.307 0.308 0.201

0.2 0.744 0.725 0.693 0.542 0.542 0.446 0.415 0.408 0.270 0.741 0.723 0.684 0.534 0.534 0.441 0.384 0.385 0.259

0.3 0.902 0.888 0.851 0.741 0.738 0.626 0.535 0.540 0.370 0.897 0.887 0.856 0.724 0.724 0.624 0.534 0.534 0.376

T = 200
α = 0.2 α = 0.7

γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.1 γ = 0.3 γ = 0.5
τ2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0.049 0.044 0.034 0.058 0.060 0.035 0.064 0.063 0.045 0.055 0.056 0.036 0.061 0.064 0.034 0.060 0.061 0.040

0.05 0.315 0.311 0.335 0.217 0.202 0.203 0.129 0.123 0.110 0.311 0.303 0.332 0.208 0.202 0.205 0.122 0.115 0.100

0.1 0.709 0.692 0.751 0.446 0.431 0.455 0.263 0.249 0.225 0.702 0.682 0.734 0.442 0.428 0.448 0.257 0.241 0.222

0.15 0.918 0.910 0.928 0.672 0.648 0.649 0.404 0.384 0.345 0.918 0.912 0.923 0.648 0.641 0.643 0.386 0.370 0.335

0.2 0.980 0.977 0.979 0.780 0.764 0.764 0.510 0.497 0.456 0.981 0.980 0.981 0.777 0.766 0.763 0.496 0.489 0.441

0.3 0.997 0.996 0.997 0.910 0.903 0.878 0.682 0.662 0.601 0.997 0.997 0.998 0.903 0.898 0.877 0.676 0.654 0.606



Table 3: Size and power of the sup LR∗1,T (na, ε), UDmaxLR1,T and CUSQ tests with normal errors and two variance breaks

(DGP: yt = et; et ∼ i.i.d. N(0, 1 + θ1(T v1 < t ≤ T v2 ), T = 200)
T v1 = [.3T ], T

v
2 = [.6T ] T v1 = [.2T ], T

v
2 = [.8T ]

ε = 0.10 ε = 0.15 ε = 0.10 ε = 0.15
θ na= 1 na= 2 UDmax na= 1 na= 2 UDmax CUSQ na= 1 na= 2 UDmax na= 1 na= 2 UDmax CUSQ
0 0.035 0.034 0.036 0.033 0.025 0.030 0.025 0.035 0.034 0.036 0.033 0.025 0.030 0.025

0.25 0.049 0.040 0.045 0.066 0.054 0.064 0.031 0.067 0.043 0.062 0.063 0.052 0.064 0.035

0.5 0.111 0.120 0.103 0.117 0.159 0.121 0.059 0.158 0.138 0.139 0.166 0.170 0.165 0.036

0.75 0.164 0.260 0.195 0.171 0.294 0.209 0.085 0.263 0.283 0.265 0.276 0.360 0.287 0.044

1 0.213 0.418 0.289 0.239 0.493 0.340 0.124 0.390 0.472 0.390 0.428 0.520 0.442 0.061

1.25 0.291 0.575 0.404 0.328 0.674 0.495 0.147 0.538 0.647 0.558 0.563 0.707 0.606 0.053

1.5 0.356 0.703 0.513 0.405 0.778 0.613 0.197 0.647 0.780 0.676 0.706 0.837 0.731 0.065

2 0.456 0.835 0.701 0.530 0.893 0.761 0.276 0.798 0.915 0.841 0.828 0.946 0.868 0.083

2.5 0.621 0.935 0.848 0.686 0.959 0.882 0.375 0.907 0.971 0.931 0.930 0.986 0.950 0.133

3 0.693 0.959 0.895 0.728 0.983 0.919 0.430 0.943 0.987 0.961 0.963 0.993 0.977 0.120



Table 4: Size of the sup LR∗2,T (ma = 1, na = 1, ε|n = 0,ma = 1) test with different trimming parameter
ε in the case of normal errors

(DGP: yt = μ1 + μ21(t > [0.5T ]) + et, et ∼ i.i.d. N(0, 1), μ1 = 0).

T = 100 T = 200
μ2\ε 0.1 0.15 0.2 0.25 0.1 0.15 0.2 0.25

0 0.045 0.042 0.030 0.023 0.039 0.032 0.030 0.031

0.1 0.038 0.028 0.033 0.030 0.045 0.046 0.036 0.037

0.25 0.037 0.039 0.034 0.030 0.034 0.034 0.035 0.030

0.5 0.037 0.035 0.036 0.033 0.031 0.025 0.029 0.027

0.75 0.043 0.047 0.046 0.041 0.044 0.033 0.035 0.031

1 0.034 0.031 0.031 0.031 0.034 0.027 0.020 0.017

2 0.030 0.023 0.028 0.028 0.041 0.029 0.028 0.029

4 0.034 0.032 0.031 0.027 0.034 0.026 0.024 0.026

10 0.038 0.033 0.032 0.031 0.038 0.033 0.025 0.022

20 0.031 0.030 0.035 0.027 0.040 0.034 0.023 0.021

Table 5: Power of the sup LR∗2,T (ma = 1, na = 1, ε|n = 0,ma = 1) test with different trimming
parameter ε in the case of normal errors

(DGP: yt = μ1 + μ21(t > [0.5T ]) + et, et ∼ i.i.d. N(0, 1 + θ1(t > [0.25T ])).

T = 100
ε = 0.1 ε = 0.2

θ\μ2 0 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20

0.25 0.063 0.046 0.047 0.056 0.065 0.063 0.053 0.056 0.040 0.043 0.049 0.045 0.044 0.047

0.5 0.101 0.094 0.089 0.090 0.099 0.096 0.101 0.091 0.092 0.097 0.077 0.096 0.091 0.101

0.75 0.150 0.162 0.133 0.168 0.177 0.181 0.178 0.168 0.174 0.160 0.176 0.177 0.176 0.171

1 0.237 0.233 0.218 0.212 0.222 0.244 0.242 0.270 0.285 0.226 0.225 0.231 0.236 0.235

1.25 0.270 0.300 0.319 0.293 0.353 0.362 0.327 0.318 0.323 0.335 0.316 0.375 0.383 0.321

1.5 0.388 0.379 0.378 0.419 0.417 0.448 0.398 0.443 0.431 0.435 0.425 0.448 0.462 0.445

2 0.533 0.519 0.496 0.557 0.556 0.598 0.559 0.592 0.586 0.558 0.588 0.602 0.620 0.594

3 0.760 0.771 0.771 0.779 0.830 0.843 0.802 0.827 0.823 0.825 0.822 0.857 0.863 0.838

4 0.887 0.876 0.865 0.892 0.908 0.909 0.916 0.921 0.910 0.920 0.924 0.927 0.943 0.940

T = 200
ε = 0.1 ε = 0.2

θ\μ2 0 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20

0.25 0.052 0.066 0.066 0.077 0.084 0.092 0.090 0.063 0.067 0.059 0.073 0.074 0.067 0.071

0.5 0.175 0.177 0.153 0.204 0.178 0.207 0.219 0.205 0.188 0.165 0.216 0.185 0.199 0.212

0.75 0.311 0.352 0.340 0.361 0.382 0.369 0.365 0.383 0.385 0.364 0.376 0.384 0.385 0.381

1 0.485 0.506 0.469 0.518 0.553 0.529 0.567 0.551 0.566 0.529 0.542 0.585 0.574 0.599

1.25 0.648 0.643 0.660 0.716 0.716 0.717 0.741 0.695 0.685 0.694 0.729 0.745 0.760 0.770

1.5 0.771 0.771 0.773 0.821 0.827 0.842 0.821 0.834 0.813 0.824 0.852 0.851 0.871 0.851

2 0.918 0.907 0.928 0.933 0.962 0.942 0.955 0.943 0.943 0.953 0.950 0.972 0.961 0.973

3 0.990 0.996 0.992 0.996 0.999 0.998 0.996 0.997 0.998 0.996 0.996 0.999 0.999 0.998

4 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000



Table 6: Size of the sup LR∗3,T (ma = 1, na = 1, ε|m = 0, na = 1) test with different trimming parameter
ε in the case of normal errors

(DGP: yt = μ1 + et, et ∼ i.i.d. N(0, 1 + θ1(t > [0.5T ]), μ1 = 0).

T = 100 T = 200
θ\ε 0.1 0.15 0.2 0.25 0.1 0.15 0.2 0.25

0 0.043 0.053 0.051 0.031 0.042 0.041 0.039 0.036

0.1 0.050 0.053 0.033 0.037 0.027 0.035 0.033 0.026

0.25 0.042 0.042 0.042 0.023 0.034 0.044 0.039 0.040

0.5 0.044 0.024 0.038 0.038 0.036 0.035 0.035 0.028

0.75 0.039 0.039 0.037 0.033 0.043 0.038 0.040 0.034

1 0.033 0.043 0.045 0.027 0.029 0.044 0.042 0.029

2 0.046 0.045 0.039 0.022 0.038 0.032 0.029 0.013

4 0.030 0.054 0.035 0.020 0.038 0.032 0.030 0.014

10 0.034 0.043 0.030 0.027 0.037 0.035 0.031 0.015

20 0.046 0.039 0.027 0.027 0.032 0.039 0.030 0.012

(DGP: yt = c+ αyt−1 + et, et ∼ i.i.d. N(0, 1 + θ1(t > [0.5T ]), c = 0, α = 0.5).

T = 100 T = 200
θ\ε 0.1 0.15 0.2 0.25 0.1 0.15 0.2 0.25

0 0.069 0.066 0.066 0.055 0.049 0.043 0.050 0.042

0.1 0.057 0.060 0.062 0.056 0.044 0.047 0.048 0.039

0.25 0.057 0.055 0.055 0.049 0.039 0.044 0.053 0.035

0.5 0.050 0.058 0.048 0.043 0.051 0.044 0.050 0.035

0.75 0.055 0.055 0.057 0.046 0.043 0.036 0.036 0.034

1 0.065 0.055 0.051 0.042 0.044 0.053 0.045 0.028

2 0.047 0.066 0.062 0.045 0.043 0.040 0.040 0.027

4 0.052 0.053 0.039 0.025 0.030 0.051 0.031 0.017

10 0.050 0.063 0.050 0.026 0.043 0.038 0.034 0.018

20 0.040 0.065 0.059 0.024 0.048 0.038 0.034 0.025

Table 7: Power of the sup LR∗3,T (ma = 1, na = 1, ε|m = 0, na = 1) test with different trimming
parameter ε in the case of normal errors

(DGP: yt = μ1 + μ21(t > [0.25T ]) + et, et ∼ i.i.d. N(0, 1 + θ1(t > [0.5T ]), μ1 = 0).

T = 100
ε = 0.1 ε = 0.2

μ2\θ 0 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20

0.1 0.050 0.050 0.055 0.058 0.059 0.057 0.059 0.050 0.049 0.043 0.034 0.031 0.037 0.030

0.25 0.096 0.092 0.092 0.082 0.078 0.074 0.080 0.117 0.115 0.110 0.088 0.077 0.077 0.077

0.5 0.349 0.351 0.340 0.300 0.263 0.255 0.245 0.353 0.350 0.334 0.305 0.283 0.283 0.243

0.75 0.670 0.663 0.651 0.580 0.538 0.503 0.485 0.702 0.696 0.692 0.625 0.586 0.586 0.544

1 0.901 0.899 0.892 0.853 0.821 0.799 0.785 0.930 0.929 0.929 0.901 0.866 0.866 0.811

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T = 200
ε = 0.1 ε = 0.2

μ2\θ 0 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20

0.1 0.059 0.062 0.054 0.046 0.043 0.045 0.049 0.059 0.056 0.044 0.058 0.055 0.053 0.042

0.25 0.175 0.170 0.178 0.140 0.136 0.136 0.138 0.192 0.179 0.183 0.158 0.142 0.132 0.135

0.5 0.650 0.609 0.585 0.556 0.518 0.494 0.466 0.681 0.655 0.673 0.583 0.542 0.506 0.482

0.75 0.939 0.959 0.934 0.913 0.901 0.882 0.847 0.963 0.965 0.963 0.913 0.909 0.878 0.883

1 1.000 0.999 0.997 0.995 0.989 0.988 0.987 1.000 0.998 0.999 0.998 0.998 0.996 0.995

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000



Table 8: Size of the sup LR∗4,T (ma, na) and UDmaxLR4,T tests in the case of GARCH(1,1) errors

(DGP: yt = et, et = ut
√
ht, with ut ∼ i.i.d. N(0, 1), ht = τ1 + γe2t−1 + ρht−1, τ1 = 1, ρ = 0.2, h0 = τ1/ (1− γ − ρ))

T=100

ε = 0.1 ε = 0.2
γ ma= na= 1 ma= 1, na= 2 ma= 2, na= 1 UDmax ma= na= 1 ma= 1, na= 2 ma= 2, na= 1 UDmax

0.1 0.044 0.046 0.047 0.050 0.037 0.040 0.035 0.046

0.3 0.048 0.065 0.051 0.073 0.041 0.052 0.042 0.055

0.5 0.072 0.083 0.075 0.085 0.065 0.069 0.059 0.061

T=200

ε = 0.1 ε = 0.2
γ ma= na= 1 ma= 1, na= 2 ma= 2, na= 1 UDmax ma= na= 1 ma= 1, na= 2 ma= 2, na= 1 UDmax

0.1 0.034 0.035 0.034 0.041 0.036 0.034 0.037 0.037

0.3 0.032 0.041 0.035 0.043 0.036 0.037 0.031 0.040

0.5 0.039 0.044 0.041 0.051 0.040 0.040 0.024 0.040



Table 9: Power of the sup LR∗4,T (ma, na) and UDmaxLR4,T tests for DGPs with one break in coefficients and two breaks in
variance

(DGP: yt = μ1 + μ21(t > T
c) + et, et ∼ i.i.d. N(0, 1 + θ1(T v1 < t ≤ T v2 )), μ1 = 0,μ2 = θ, ε = 0.1)

ma= 1 ma= 1 UDmax ma= 1 ma= 1 UDmax ma= 1 ma= 1 UDmax ma= 1 ma= 1 UDmax ma= 1 ma= 1 UDmax

na= 1 na= 2 na= 1 na= 2 na= 1 na= 2 na= 1 na= 2 na= 1 na= 2
T c= T v1= [.3T ], T

v
2= [.6T ] T c= T v2 = [.6T ], T

v
1= [.3T ] T c= [.3T ], T v1= [.5T ], T

v
2= [.6T ] T c= [.5T ], T v1= [.3T ], T

v
2= [.6T ] T c= [.6T ], T v1= [.3T ], T

v
2= [.5T ]

θ T = 100
0.25 0.081 0.069 0.090 0.091 0.082 0.097 0.083 0.069 0.086 0.089 0.085 0.097 0.092 0.079 0.100

0.5 0.263 0.263 0.280 0.314 0.280 0.313 0.262 0.233 0.269 0.320 0.294 0.326 0.318 0.281 0.315

0.75 0.576 0.560 0.586 0.655 0.631 0.643 0.592 0.570 0.583 0.687 0.661 0.691 0.648 0.628 0.650

1 0.854 0.860 0.857 0.892 0.902 0.896 0.874 0.861 0.877 0.895 0.906 0.918 0.890 0.886 0.888

1.25 0.980 0.974 0.976 0.988 0.985 0.984 0.982 0.974 0.982 0.986 0.983 0.987 0.983 0.987 0.987

1.5 1.000 1.000 0.997 0.998 0.999 1.000 0.999 0.997 0.998 1.000 1.000 1.000 1.000 0.999 0.999

T = 200
0.25 0.119 0.124 0.129 0.156 0.138 0.159 0.128 0.109 0.125 0.152 0.153 0.158 0.142 0.134 0.149

0.5 0.552 0.561 0.569 0.633 0.622 0637 0.547 0.515 0.545 0.642 0.645 0.656 0.628 0.593 0.624

0.75 0.925 0.929 0.925 0.961 0.958 0.955 0.935 0.927 0.931 0.968 0.976 0.971 0.966 0.956 0.962

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.999 1.000

1.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 10: Power of the sup LR∗4,T (ma, na) and UDmaxLR4,T tests for DGPs with two breaks in coefficients and one break in
variance

(DGP: yt = μ1 + μ21(T
c
1 < t ≤ T c2 ) + et, et ∼ i.i.d. N(0, 1 + θ1(t > T v)), μ1 = 0,μ2 = θ, ε = 0.1).

ma= 1 ma= 2 UDmax ma= 1 ma= 2 UDmax ma= 1 ma= 2 UDmax ma= 1 ma= 2 UDmax ma= 1 ma= 2 UDmax

na= 1 na= 1 na= 1 na= 1 na= 1 na= 1 na= 1 na= 1 na= 1 na= 1
T c1= T

v= [.3T ], T c2= [.6T ] T c1= [.3T ], T
c
2= T

v= [.6T ] T c1= [.5T ], T
c
2= [.6T ], T

v= [.3T ] T c1= [.3T ], T
c
2= [.6T ], T

v= [.5T ] T c1= [.3T ], T
c
2= [.5T ], T

v= [.6T ]
θ T = 100
0.25 0.064 0.085 0.081 0.076 0.080 0.091 0.051 0.051 0.056 0.073 0.080 0.087 0.061 0.065 0.080

0.5 0.107 0.181 0.164 0.140 0.194 0.177 0.085 0.092 0.101 0.141 0.194 0.178 0.098 0.150 0.134

0.75 0.238 0.405 0.352 0.294 0.479 0.423 0.137 0.161 0.165 0.282 0.468 0.416 0.187 0.358 0.307

1 0.412 0.688 0.612 0.512 0.809 0.750 0.237 0.278 0.276 0.498 0.770 0.720 0.302 0.677 0.577

1.25 0.566 0.849 0.800 0.709 0.958 0.923 0.299 0.436 0.405 0.684 0.933 0.905 0.399 0.876 0.806

1.5 0.707 0.935 0.902 0.854 0.995 0.987 0.409 0.564 0.558 0.835 0.987 0.980 0.520 0.964 0.934

T = 200
0.25 0.079 0.117 0.097 0.083 0.104 0.113 0.060 0.066 0.073 0.086 0.115 0.114 0.075 0.088 0.096

0.5 0.275 0.421 0.379 0.330 0.490 0.447 0.145 0.180 0.185 0.335 0.486 0.453 0.224 0.378 0.340

0.75 0.590 0.814 0.774 0.688 0.913 0.870 0.333 0.420 0.408 0.681 0.895 0.852 0.480 0.818 0.769

1 0.844 0.976 0.963 0.919 0.997 0.994 0.524 0.673 0.654 0.891 0.992 0.986 0.700 0.982 0.960

1.25 0.964 0.996 0.992 0.991 1.000 1.000 0.736 0.868 0.859 0.983 1.000 1.000 0.861 0.999 0.999

1.5 0.995 1.000 1.000 1.000 1.000 1.000 0.853 0.945 0.942 0.999 1.000 1.000 0.944 1.000 1.000



Table11: Finite sample performance of the specific to general sequential procedure to select the number of breaks in coefficients and variance

(DGP: yt = μ1 + μ21(t > T
c) + et, et ∼ i.i.d. N(0, 1 + θ1(t > T v)), ε = 0.15, T = 200).

m = n = 0 m = n = 1 m = n = 1
T c= [.5T ], T v= [.7T ] T c= [.25T ], T v= [.75T ]

μ2= θ = 1 μ2= 1, θ = 3 μ2= 1, θ = 5 μ2= θ = 2 μ2= θ = 1 μ2= θ = 2 μ2= 1, θ = 3
prob(m = 0, n = 0) 0.906 0.000 0.000 0.000 0.000 0.000 0.000 0.000

prob(m = 0, n = 1) 0.042 0.000 0.002 0.003 0.000 0.000 0.000 0.000

prob(m = 0, n = 2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

prob(m = 1, n = 0) 0.043 0.286 0.001 0.000 0.023 0.343 0.028 0.004

prob(m = 1, n = 1) 0.007 0.680 0.954 0.956 0.936 0.628 0.937 0.963
prob(m = 1, n = 2) 0.000 0.009 0.002 0.016 0.019 0.007 0.011 0.010

prob(m = 2, n = 0) 0.002 0.008 0.000 0.000 0.000 0.010 0.001 0.000

prob(m = 2, n = 1) 0.000 0.016 0.023 0.025 0.022 0.011 0.020 0.021

prob(m = 2, n = 2) 0.000 0.001 0.000 0.000 0.000 0.001 0.003 0.002

m = n = 1 m = 1, n = 0 m = 0, n = 1
T c= T v= [.5T ] T c= [.5T ] T v= [.5T ]

μ2= θ = 1 μ2= 1, θ = 3 μ2= 1 μ2= 2 μ2= 3 θ = 1 θ = 2 θ = 3
prob(m = 0, n = 0) 0.000 0.000 0.000 0.000 0.000 0.234 0.005 0.000

prob(m = 0, n = 1) 0.003 0.029 0.000 0.000 0.000 0.706 0.924 0.924
prob(m = 0, n = 2) 0.000 0.002 0.000 0.000 0.000 0.013 0.027 0.031

prob(m = 1, n = 0) 0.240 0.000 0.931 0.935 0.934 0.009 0.000 0.000

prob(m = 1, n = 1) 0.729 0.917 0.039 0.038 0.038 0.035 0.040 0.041

prob(m = 1, n = 2) 0.008 0.034 0.000 0.000 0.000 0.002 0.003 0.003

prob(m = 2, n = 0) 0.005 0.000 0.028 0.023 0.024 0.001 0.000 0.000

prob(m = 2, n = 1) 0.014 0.017 0.002 0.004 0.004 0.000 0.001 0.001

prob(m = 2, n = 2) 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

Note: prob(m = j, n = i) represents the probability of choosing j breaks in mean and i breaks in variance. The upper bounds for

the coefficients and the variance breaks are set to M = 2 and N = 2.



Table 12: Empirical results for the in�ation rate

a) Tests for structural changes in mean and/or variance
supLR4;T UDmaxLR4;T

ma = 1 ma = 2 ma = 3 M = 3; N = 3
na = 1 12.18�� 10.78 9.58 15.91���

na = 2 15.27��� 13.33��� 11.81��

na = 3 15.91��� 15.06��� 14.03���

b) Tests for structural changes in mean
supLR3;T UDmaxLR3;T supSeq9;T break dates

ma = 1 ma = 2 ma = 3 M = 3 ma = 1 ma = 2 ma = 3
na = 0 22.50�� 19.42��� 15.93�� 22.50�� 10.17 9.38 4.59 1982:1
na = 1 8.54 7.57 7.04 8.54 6.19 6.99 4.59
na = 2 5.72 6.62 7.37 7.37 2.79 4.96 3.10
na = 3 9.90 9.72 10.03 10.03 2.74 4.80 4.74

c) Tests for structural changes in variance
supLR2;T UDmaxLR2;T supSeq10;T break dates

na = 1 na = 2 na = 3 N = 2 na = 1 na = 2 na = 3
ma = 0 16.00��� 21.30��� 16.49��� 21.30��� 18.69��� 13.05�� 5.21 1971:3 1983:2 2006:3
ma = 1 9.37�� 13.77��� 14.00��� 14.00��� 18.97��� 16.21��� 5.54 1971:3 1982:1 2006:3
ma = 2 3.33 8.26�� 11.22��� 11.22�� 18.97��� 16.79��� 6.73
ma = 3 1.69 9.14�� 11.90��� 11.90�� 19.93��� 16.79��� 7.18
Notes: *,** and *** indicate signi�cance at the 10%, 5% and 1% levels, respectively.

Table 13: Empirical results for the real interest rate

a) Tests for structural changes in mean and/or variance
supLR4;T UDmaxLR4;T

ma = 1 ma = 2 ma = 3 M = 3; N = 2
na = 1 8.34�� 4.66 7.50�� 11.44���

na = 2 8.93��� 11.44��� 6.54��

b) Tests for structural changes in mean
supLR3;T UDmaxLR3;T supSeq9;T break dates

ma = 1 ma = 2 ma = 3 M = 3 ma = 1 ma = 2 ma = 3
na = 0 14.66��� 25.75��� 20.60��� 25.75��� 27.86��� 7.63 3.33 1972:3 1980:3
na = 1 8.42� 25.75��� 24.08��� 25.75��� 25.82��� 6.20 2.99 1972:3 1980:3
na = 2 8.17� 25.71��� 21.57��� 25.71��� 25.48��� 6.87 3.33 1972:3 1980:3

c) Tests for structural changes in variance
supLR2;T UDmaxLR2;T supSeq10;T break dates

na = 1 na = 2 N = 2 na = 1 na = 2
ma = 0 30.03��� 15.96��� 30.03��� 17.05��� 5.89 1972:3 1981:2
ma = 1 21.70��� 12.02��� 21.70��� 4.25 6.36 1972:3
ma = 2 16.20��� 10.72��� 16.20��� 15.29��� 6.45 1964:3 1972:3
ma = 3 16.42��� 11.62��� 16.42��� 10.88�� 6.45 1966:4 1969:3
Notes: *,** and *** indicate signi�cance at the 10%, 5% and 1% levels, respectively.
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Figure 1: Annual change of the quarterly US in�ation rate: 1959:1-2018:4

­8

­6

­4

­2

0

2

4

6

8

10

12

14

1961 1965 1969 1973 1977 1981 1985

Figure 2: US ex-post real interest rate: 1961:1-1986:3



�Testing jointly for structural changes in the error variance and coe¢ cients of
a linear regression model�

by Pierre Perron, Yohei Yamamoto and Jing Zhou
Supplementary Material

A: Proof of the statement in equation (7): Consider an AR(1) model yt = �yt�1+ut

in which the variance of ut has n breaks and j�j < 1. Consider the variance adjusted series
y�t = �y�t�1 + u�t where u

�
t = ut=�i0 and y�t = �0y

�
t with �0 = �10, without loss of generality.

Then,

T�1
P[Ts]

t=1 ztz
0
t = T�1

P[Ts]
t=1 y

2
t�1

= T�1
P[Ts]

t=1 y
�2
t�1 + 2T

�1P[Ts]
t=1 y

�
t�1(yt�1 � y�t�1) + T�1

P[Ts]
t=1(yt�1 � y�t�1)

2:

We here show that the second and the third terms are Op(�T ) and Op(�2T ) where �T ! 0

uniformly in s. For notational simplicity, we show these results for yt and y�t instead of yt�1
and y�t�1 as the di¤erence is negligible. First, for [T�

v0
k�1] < t � [T�v0k ]:

yt =
Pt�1

�=0 �
�ut�� =

Pk
l=1(�l;0=�0)vl;t

y�t =
Pt�1

�=0 �
�u�t�� =

Pk
l=1 vl;t

where vl;t = �0
P[T�v0l ]

�=[T�v0l�1]+1
��u�t�� for l < k and vk;t = �0

Pt
�=[T�v0k�1]+1

��u�t�� . These yield

y�t (yt � y�t ) =
Pk

l1=1

Pk
l2=1

�
�l2;0 � �0

�0

�
vl1;tvl2;t

(yt � y�t )
2 =

Pk
l1=1

Pk
l2=1

�
�l1;0 � �0

�0

��
�l2;0 � �0

�0

�
vl1;tvl2;t

so that for any l < k

T�1
P[T�v0l ]

t=[T�v0l�1]+1
y�t (yt � y�t ) =

Pk
l1=1

Pk
l2=1

�
�l2;0 � �0

�0

�
| {z }

=Op(�T )

�
T�1

P[T�v0l ]

t=[T�v0l�1]+1
vl1;tvl2;t

�
| {z }

=Op(1)

= S1;l = Op(�T )

and

T�1
P[T�v0l ]

t=[T�v0l�1]+1
(yt � y�t )

2

=
Pk

l1=1

Pk
l2=1

�
�l1;0 � �0

�0

��
�l2;0 � �0

�0

�
| {z }

=Op(�2T )

�
T�1

P[T�v0l ]

t=[T�v0l�1]+1
vl1;tvl2;t

�
| {z }

=Op(1)

= S2;l = Op(�
2
T ):
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For any l < k; T�1
P[T�v0l ]

t=[T�v0l�1]+1
vl1;tvl2;t = Op(1) because vl1;t and vl2;t are covariance station-

ary series for any l1 and l2. We can show that the same property holds uniformly in s for

l = k with a minor change of notation. Therefore, uniformly in s,

2T�1
P[Ts]

t=1 y
�
t�1(yt�1 � y�t�1) = 2

Pk
l=1 S1;l = Op(�T )

T�1
P[Ts]

t=1(yt�1 � y�t�1)
2 =

Pk
l=1 S2;l = Op(�

2
T )

B: The choice of  ̂.

To address what speci�c version of the correction factor to use, we consider the size and

power of the supLR�4;T test under the following simple DGP with GARCH(1,1) errors:

yt = �1 + �21(t > [:25T ]) + et; et = ut
p
ht, ut � i:i:d: N(0; 1);

ht = � 1 + � 21 (t > [:75T ]) + 
e2t�1 + �ht�1;

with h0 = � 1= (1� 
 � �) and � 1 = 1. The sample size is T = 100 and " = 0:20. Under

H0, �2 = � 2 = 0, while under H1, one break in mean and one break in variance are allowed

(�1 = 0 under both H0 and H1). We consider four versions for the estimate  ̂ as de�ned by

(8): 1)  ̂ = 2, i.e., no dependence in �t is accounted for (labelled �no correction�), 2) using

the residuals under H1 to construct the bandwidth bT and to estimate the autocovariances

of �t (labelled �alternative�); 3) using the residuals under H0 instead (labelled �null�); and,

as suggested by Kejriwal (2009), 4) using a hybrid method that constructs the bandwidth bT
using the residuals under H1 but uses the residuals under H0 to estimate the autocovariances

of �t (labelled �hybrid�). Here and elsewhere, we use 1,000 replications. The reason to

include the �no correction�option is to assess which cases (i.e., which combinations of values

for � and 
) leads to distortions when serial dependence is not accounted for and how well

the various suggested options for corrections improve the size.

The results for the exact size of the test (5% nominal size) are presented in Table S.1.

The critical values are those of the bound of the limit distribution, hence, a conservative

size is expected. The results show that the methods �no correction� and �alternative�

exhibit substantial size distortions, that increase with 
 and �, which indicates the extent

of the correlation in the squared residuals. The method �null�, on the other hand, shows

conservative size distortions as expected. The hybrid method shows less conservative size

distortions when 
 and � are not very large. These results dictate our choice of � = 0:2 and


 = 0:1,..., 0:5 in the subsequent simulations reported in the text since they imply tests that

require a correction and using either the �null�and �hybrid�methods yields test with good
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�nite samples sizes. The results for power are presented in Table S.2. We only consider the

methods �null�and �hybrid�given the high size distortions of the methods �no correction�

and �alternative�. The results show that substantial power gains can be achieved using

the �hybrid�method as opposed to the �null�method, especially if the GARCH e¤ect is

pronounced. Hence, we recommend using the �hybrid�method and all results reported in

the main text are based on it.

C: Should we always correct?

We address the issue of whether it is costly in terms of power to use a correction valid

under more general conditions than needed. To that e¤ect we �rst consider the power of the

supLR�4;T test under the following DGP with normal errors:

yt = �1 + �21(t > T c1 ) + et; et � i:i:d: N(0; 1 + �1(t > T v1 ));

where we set �1 = 0 and �2 = �. We consider three scenarios for the timing of the breaks: a

common break in mean and variance at T c1 = T v1 = [:5T ], and disjoint breaks at fT c1 = [:3T ],
T v1 = [:6T ]g and fT c1 = [:6T ], T v1 = [:3T ]g. We use T = 100, 200 and the power, for 5%

nominal size tests, is evaluated at values of � ranging from 0:25 to 1:5 with " = 0:15. Three

versions of the supLR�4;T tests are evaluated: 1) with a full correction based on  ̂ using

the hybrid method (labelled �full�); 2) a correction valid only for i:i:d: errors, though not

necessarily normal, given by  ̂ = �̂4=�̂
4 � 1, where �̂2 = T�1

PT
t=1 û

2
t and �̂4 = T�1

PT
t=1 û

4
t

with ût the residuals under H0 (labelled �i.i.d.�); 3) no correction, i.e., using  ̂ = 2, which

is the appropriate value with normal errors (labelled �NC�). The results are presented in

Table S.3. They show that the power is basically the same using any of the three methods.

Hence, there is no cost in using a full correction and we use it throughout for the results

reported in the main text.

D: Local asymptotic power functions.

We consider model (1) focusing on the case of n = m = 1 with the following assumptions.

�Assumption L1: Assumptions A1 and A3 hold with �20 � �10 = ��=
p
T . We also

have T�1=2
P[Ts]

t=1 [(u
�
t )
2 � 1] )  W (s) with  = limT!1 var(T

�1=2PT
t=1[(u

�
t )
2 � 1]) and

T�1
P[Ts]

t=1(u
�
t )
2 p! s uniformly in s 2 [0; 1].

�Assumption L2: Assumptions A2 and A3 hold with �02 � �01 = ��=
p
T :

In the following, we derive the local asymptotic power of the supLR2;T and supLR3;T
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tests, allowing for nuisance breaks, i.e., we consider the tests supLR2;T (n = 1;m = 1; "jn =
0;m = 1) and supLR3;T (m = 1; n = 1; "jm = 0; n = 1). The results are also valid if the

nuisance breaks are not accounted for, in which case the tests reduce to the supLR1;T and

the supLRT test (Andrews, 1993), respectively. Without loss of generality, we denote �20
by �0 and �

0
2 by �

0.

Lemma S.1 Under Assumption L1 or Assumption L1 with Assumption A3 allowing for
��1 = 0,

supLR2;T (n = 1;m = 1; "jn = 0;m = 1)) sup�v2�cv;�( =2)[J(�
v)]2 (S.1)

where

J(�v) =
�vW (1)�W (�v)p

�v(1� �v)
+
2���0p

 
b(�v)

b(�v) =

8<: �v0
q

1��v
�v

if �v0 � �v

(1� �v0)
q

�v

1��v if �v0 > �v
:

In particular if ��1 = 0, which is imposed in the construction of the test,

supLR1;T (n = 1; ")) sup�v2�v;"( =2)[J(�
v)]2: (S.2)

Lemma S.2 Under Assumption L2 or Assumption L2 with Assumption A3 allowing for
��10 = 0,

supLR3;T (m = 1; n = 1; "jm = 0; n = 1)) sup�c2�vc;"(�
c)0J(�c) (S.3)

where

J(�c) =
�cWq(1)�Wq(�

c)p
�c(1� �c)

+Q1=2��b(�c)

b(�c) =

8<: �c0
q

1��c
�c

if �c0 � �c

(1� �c0)
q

�c

1��c if �c0 > �c

In particular, if ��10 = 0, which is imposed in the construction of the test,

supLRT (m = 1; ")) sup�c2�c;" J(�
c)0J(�c): (S.4)

Importantly, the result in (S.4) is the same as Theorem 4(c) in Andrews (1993), if we

set (in his notation) �(s) = ��I(s � �c0), S = �20(T
�1Z 0Z) and M = (T�1Z 0Z). For
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comparisons, we also consider the cumulative sum of squares (CUSQ) test when there are

no nuisance coe¢ cient breaks. With ût the OLS regression residuals, the CUSQ test is:

CUSQ =
max

1�T v�T

���T�1=2 hPT v

t=1 û
2
t � T v

T

PT
t=1 û

2
t

i���
T�1

PT
t=1 û

2
t

From Deng and Perron (2008)

CUSQ = sup
�v2[0;1]

����T�1=2 �P[T�v ]
t=1

�
u2t
�20
� 1
�
� [T�

v]

T

PT
t=1

�
u2t
�20
� 1
������+ op(1)

and we obtain the following result.

Lemma S.3 Under Assumption L1, if there is no structural change in the coe¢ cients, then

CUSQ)
p
 sup
�v2[0;1]

����W (�v)� �vW (1) +
2���0p

 
�(�v)

���� (S.5)

where

�(�v) =

8<: �v0(1� �v) if �v0 � �v

�v(1� �v0) if �v0 > �v
:

Lemma S.1 suggests that the local asymptotic power of the supLR2;T test coincides with

that of the supLR1;T test except for the fact that the set of permissible break dates �cv;"
becomes smaller than �v;". Lemma S.2 suggests that the local asymptotic power of the

supLR3;T test coincides with that of the standard supLRT test derived in Theorem 4 of

Andrews (1993) except that the set of permissible break dates �vc;" is in general smaller than

�c;". Hence, when testing for changes in variance allowing for changes in coe¢ cients, we have

the same local asymptotic power function as when testing for changes in variance when no

change in coe¢ cient is present and none is allowed for. Therefore, we incur no loss in local

asymptotic power by adopting our more general approach.

We next compare the local asymptotic power functions of the supLR1;T test given by

(S.2), the supLR2;T test given by (S.1) and the CUSQ test given by (S.5) via Monte Carlo

simulations. To this end, the Wiener processes W (�) are approximated by the partial sums
of i.i.d. standard normal random variables with 5,000 discrete steps. The power functions

of 5% nominal size tests are computed based on 10,000 Monte Carlo replications with the

value of �� ranging from 0 to 10. We also set the trimming " = 0:15,  = 2 and �0 = 1,

although these particular choices do not qualitatively a¤ect the results. We use the critical

values of 8:58 for the supLR1;T and supLR2;T tests and
p
2� 1:358 for the CUSQ test.
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Figure S.1 shows the asymptotic local power functions of the supLR1;T test and the

CUSQ test when a break in variance occurs at �v0 = 0:3; 0:5 and 0:7 and no break occurs

in the coe¢ cients. They show the local asymptotic power functions to be almost identical.

Figure S.2 presents the local asymptotic power functions of the supLR2;T test when it ac-

counts for a coe¢ cient break at �c0 = 0:3; 0:5 or 0:7. It also shows, the local asymptotic

power functions of the CUSQ test under the (correct) assumption of no break in the coe¢ -

cients. Hence, this simulation design gives an advantage to the CUSQ test and some power

loss for the supLR2;T test might be expected. Indeed, the power of the supLR2;T test is

slightly lower when the variance and the coe¢ cient break dates coincide. This is because

the permissible break dates around the true break date are not considered due to the con-

current nuisance break. However, the power loss of the supLR2;T test is very minor even

though the supLR2;T test allows for a coe¢ cient break. The power functions of both tests

are almost identical when the two breaks are far apart. i.e., the case of (�v0; �c0) = (0:3; 0:7)

and (0:7; 0:3).

Proof of Lemma S.1 The supLR2;T test is:

supLR2;T = 2[log L̂T (eT c; eT v)� log eLT (T̂ c)]
= T log e�2 � (T � eT v) log �̂22 � eT v log �̂21

where e�2 = T�1
PT

t=1(yt � x0t
e� � z0t

e�t;j)2, �̂22 = (T � eT v)�1PT
t= eT v+1(yt � x0t�̂ � z0t�̂t;j)

2 and

�̂21 =
eT v�1PeT v

t=1(yt � x0t�̂ � z0t�̂t;j)2. Applying a Taylor expansion to log e�2, log �̂22 and log �̂21
around log �20 (without loss of generality, let �

2
0 = �220), we obtain

supLR2;T = (F1;T + F2;T ) + op(1)

where

F1;T = (�20)
�1[Te�2 � (T � eT v)�̂22 � eT v�̂21]

= (�20)
�1

eT vX
t=1

h
(yt � x0t

e� � z0t
e�t;j)2 � (yt � x0t�̂ � z0t�̂t;j)

2
i

+(�20)
�1

TX
t=eT v+1

h
(yt � x0t

e� � z0t
e�t;j)2 � (yt � x0t�̂ � z0t�̂t;j)

2
i

and

F2;T = �1
2

"
T

�e�2 � �20
�20

�2
� (T � eT v)� �̂22 � �20

�20

�2
� eT v � �̂21 � �20

�20

�2#
= �1

2
(I � II � III):
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We �rst show that F1;T = op (1). From Assumption A1, for any partition eT v, we have
X 0
iXi = Op(T ); Z

0
iZi = Op(T ); X

0
iZi = Op(T ); X

0
iUi = Op(T

1=2) and Z 0iUi = Op(T
1=2)

for i = 1 and 2. In addition, under Assumptions A1 and A3 in which the change in the

coe¢ cient is assumed to shrink at rate �T , we obtain ���̂ = Op(T
�1=2), �0j� �̂j = Op(T

�1=2),

�̂ � e� = op(T
�1=2) and �̂j � e�j = op(T

�1=2) for j = 1 and 2. Hence, F1;T = op (1) is shown

by directly following the proof of Theorem 1(b). If there is no break in the coe¢ cient

(�01 = �02), we also obtain � � �̂ = Op(T
�1=2), �0j � �̂j = Op(T

�1=2), �̂ � e� = op(T
�1=2) and

�̂j � e�j = op(T
�1=2) for j = 1 and 2 no matter where eT c is. Hence, F1;T = op (1).

For F2;T , we slightly change the notation and express the change in variance as �i0��20 =
(���i =�20)=

p
T for i = 1; 2. We also denote �20 by �0 without loss of generality so that ���2 = 0

by construction. Then,

�i0 � �0 =
���i =�0p

T

�2i0 = �20 + 2
���ip
T
+
(���i =�0)

2

T
= �20

�
1 + 2

���ip
T
+O(T�1)

�
or

1

�20
=

1

�2i0

�
1 + 2

���ip
T
+O(T�1)

�
: (S.6)

For each of the three terms, we have

p
I = T�1=2

TX
t=1

"
(yt � x0t

e� � z0t
e�t;j)2

�20
� 1
#

= T�1=2
TX
t=1

(
u2t
�20
� 1) + op(1)

= T�1=2
TX
t=1

(
u2t
�2i0

� 1) + T�1
TX
t=1

(
u2t
�2i0
)2���1 I(t � T v01 ) + op(1)

)
p
 W (1) + 2�v0���1 ;

p
II =

 
T � eT v
T

!�1=2
T�1=2

TX
t=eT v+1

(
u2t
�20
� 1) + op(1)

=

 
T � eT v
T

!�1=28<:T�1=2
TX
t=1

(
u2t
�20
� 1)� T�1=2

eT vX
t=1

(
u2t
�20
� 1)

9=;+ op(1)

=

 
T � eT v
T

!�1=28<:T�1=2
TX
t=1

(
u2t
�2i0

� 1)� T�1=2
eT vX
t=1

(
u2t
�2i0

� 1)
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+T�1
TX
t=1

(
u2t
�2i0
)���1 I(t � T v0)� T�1

eT vX
t=1

(
u2t
�2i0
)2���1 I(t � T v0)

9=;+ op(1)

)
p
 
W (1)�W (�v)p

1� �v
+
�v0 �minf�v0; �vgp

1� �v
2���1 ;

p
III =

 eT v
T

!�1=28<:T�1=2
eT vX
t=1

(
u2t
�20
� 1)

9=;+ op(1)

=

 eT v
T

!�1=28<:T�1=2
eT vX
t=1

(
u2t
�2i0

� 1) + T�1
eT vX
t=1

(
u2t
�2i0
)2���1 I(t � T v01 )

9=;+ op(1)

)
p
 
W (�v)p

�v
+
minf�v0; �vgp

�v
2���1 :

Therefore,

F2;T ) � 
2

"
�vW (1)�W (�v)p

�v(1� �v)
+

2p
 
���1 b(�

v)

#2
where

b(�v) =

8<: �v0
q

1��v
�v

if �v0 � �v

(1� �v0)
q

�v

1��v if �v0 > �v
:

This yields

supLR2;T ) sup
�v2�cv;"

 

2
[J(�v)]2

J(�v) =
�vW (1)�W (�v)p

�v(1� �v)
+
2���1p
 
b(�v)

b(�v) =

8<: �v0
q

1��v
�v

if �v0 � �v

(1� �v0)
q

�v

1��v if �v0 > �v
:

The results for the supLR1;T follow because F1;T = op(1) holds also when there is no break

in the coe¢ cients.

Proof of Lemma S.2. The supLR3;T test is:

supLR3;T = 2[log L̂T (eT c; eT v)� log eLT (T̂ v)]
= (T � T̂ v) log e�22 + T̂ v log e�21 � (T � eT v) log �̂22 � eT v log �̂21
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where e�22 = (T � eT v)�1PT
t=eT v+1(yt � x0t

e� � z0t
e�)2; e�21 = (eT v)�1PeT v

t=1(yt � x0t
e� � z0t

e�)2, �̂22 =
(T � eT v)�1PT

t=eT v+1(yt� x0t�̂ � z0t�̂t;j)2 and �̂21 = (eT v)�1PeT v
t=1(yt� x0t�̂ � z0t�̂t;j)2. Applying a

Taylor expansion to log e�22 and log �̂22 around log �220, and to log e�21 and log �̂21 around log �210,
supLR3;T = (F1;T + F2;T ) + op(1) (S.7)

where

F1;T = (T � T̂ v)
e�22
�220

� (T � eT v) �̂22
�220

+ T̂ v
e�21
�210

� eT v �̂21
�210

and

F2;T = �1
2

"
(T � T̂ v)

�e�22 � �220
�220

�2
� (T � eT v)� �̂22 � �220

�220

�2#

�1
2

"
T̂ v
�e�21 � �210

�210

�2
� eT v � �̂21 � �210

�210

�2#
:

We �rst show that F2;T = op (1). We have

F2;T = �1
2

"
T � T̂ v

T

�p
T

�e�22 � �220
�220

��2
� T � eT v

T

�p
T

�
�̂22 � �220
�220

��2#

�1
2

"
T̂ v

T

�p
T

�e�21 � �210
�210

��2
�
eT v
T

�p
T

�
�̂21 � �210
�210

��2#

where [(T � T̂ v)=T ][
p
T (e�22��220)=�220]2 and [(T � eT v)=T ][pT (�̂22��220)=�220]2 have the same

limit distribution and (T̂ v=T )[
p
T (e�21 � �210)=�

2
10]

2 and (eT v=T )[pT (�̂22 � �220)=�
2
20]

2 have the

same limit distribution under Assumption A3. These also hold when there is no break in

the variance. For F1;T , let �0 = �20 without loss of generality, then

F1;T = (�20)
�1
h
(T � T̂ v)e�22 � (T � eT v)�̂22 + T̂ ve�21 � eT v�̂21i

�(�20)�1
�
�210 � �20
�210

�
(T̂ ve�21 � eT v�̂21):

The �rst term becomes,

(�20)
�1

24 TX
t=1

(yt � x0t
e� � z0t

e�)2 � eT cX
t=1

(yt � x0t
e� � z0t

e�)2 � TX
t=eT c+1

(yt � x0t�̂ � z0t�̂j+1)
2

35
= (�20)

�1[Dr �Du(2)�Du(1)]
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and the second term is op(1) under Assumption A3. When there is no break in variance, the

second term is zero because �210 � �20 = �210 � �220 = 0. Then,

Dr �Du(2)�Du(1)

= �
h
T�1=2

PT
t=1(utz

0
t + I(t � T c0)��0ztz

0
t)
i �
T�1

PT
t=1 ztz

0
t

�
�
h
T�1=2

PT
t=1(ztut + ztz

0
t�
�I(t � T c0))

i
+
h
T�1=2

PeT c
t=1(utz

0
t + I(t � T c0)��0ztz

0
t)
i �
T�1

PeT c
t=1 ztz

0
t

�
�
h
T�1=2

PeT c
t=1(ztut + ztz

0
t�
�I(t � T c0))

i
+
h
T�1=2

PT
t=eT c+1(utz0t + I(t � T c0)��0ztz

0
t)
i �
T�1

PT
t=eT c+1 ztz0t

�
�
h
T�1=2

PT
t=eT c+1(ztut + ztz

0
t�
�I(t � T c0))

i
+ op(1)

) J(�c)0J(�c)

where

J(�c) =

 
�cWq(1)�Wq(�

c)p
�c(1� �c)

!
+Q1=2��b(�c)

b(�c) =

8<: �c0
q

1��c
�c

if �c0 � �c

(1� �c0)
q

�c

1��c if �c0 > �c

and Q � p limT!1(T
�1PT

t=1 ztz
0
t). Hence, from (S.7) the results of the supLR3;T test is

obtained. The result for the the supLRT is also obtained since we showed F2;T = op(1) to

hold when there is no variance break.

Proof of Lemma S.3. By (S.6), we obtain

�2i0=�
2
0 = 1 + 2�

��
i =
p
T +O(T�1)

and the test statistic CUSQ is such that:

CUSQ = sup
�v2[0;1]

����T�1=2 �P[T�v ]
t=1

�
u2t
�2i0

�2i0
�20
� 1
�
� [T�

v]

T

PT
t=1

�
u2t
�2i0

�2i0
�20
� 1
������+ op(1)

= sup
�v2[0;1]

����T�1=2 �P[T�v ]
t=1

�
u2t
�2i0

�
1 + 2

���1p
T
I(t � T v0)

�
� 1
�

� [T�
v]

T

PT
t=1

�
u2t
�2i0

�
1 + 2

���1p
T
I(t � T v0)

�
� 1
��

+ op(1)
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= sup
�v2[0;1]

����T�1=2 �P[T�v ]
t=1

�
u2t
�2i0

� 1
�
� [T�

v]

T

PT
t=1

�
u2t
�2i0

� 1
��

+ T�1
�P[T�v ]

t=1

�
u2t
�2i0

�
2���1 I(t � T v0)� [T�

v]

T

PT
t=1

�
u2t
�2i0

�
2���1 I(t � T v0)

�����+ op(1)

)
p
 sup
�v2[0;1]

����[W (�v)� �vW (1)] +
2���1p
 
�(�v)

����
where

�(�v) =

8<: �v0(1� �v) if �v0 � �v

�v(1� �v0) if �v0 > �v
:

E: Robustness to non-normal errors.

Given that our tests are based on a quasi-likelihood framework assuming normal errors,

it is useful to assess their size and power under non-normal error distributions. We focus

on the tests for the structural changes in variance, i.e. the supLR1;T and supLR2;T tests,

mostly because these are the most prone to be a¤ected by non-normality; e.g., the test for a

single coe¢ cient break coincides with that derived by Andrews (1993) using a GMM-based

approach. To investigate the supLR1;T test, we generate the same data as the experiment

pertaining to Table 2:

yt = c+ �yt�1 + et; et = ut
p
ht

ht = � 1 + � 2I(t > [:5T ]) + 
e2t�1 + �ht�1;

where h0 = � 1= (1� 
 � �) and ut is drawn from the following well-known non-normal dis-

tributions: (a) the t distribution with 5 degrees of freedom (t5), (b) a mixture of two normal

distributions: v1I(z � 0:5)+v2I(z > 0:5), where z � U [0; 1], v1 � N(�1; 1) and v2 � N(1; 1)

(c) the �2 distribution with 5 degrees of freedom and (d) an exponential distribution � ln(v),
v � U [0; 1]. These distributions were chosen as empirically relevant examples following Bai

and Ng (2005). To facilitate comparisons, the errors are normalized by subtracting the sam-

ple mean and dividing by the sample standard deviation of each Monte Carlo repetition.

The model parameter values are set at c = 0:5; � 1 = 0:1; � = 0:2; and " = 0:15. We consider

� = 0:2; 0:7 and 
 = 0:1; 0:3; 0:5. The sample size is T = 100; 200. Table S.4 presents the

exact size and power of the supLR1;T , UDmax1;T and CUSQ tests. The reported values are

roughly comparable to those with normal errors in Table 2, i.e., little if any size distortions.

In all cases, the power decreases to some extent. Note, however, that this is also the case for
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the CUSQ test and the relative advantage of the supLR1;T and UDmax1;T tests over the

CUSQ test remains under these non-normal errors.

For the supLR2;T test, we use the same data generating process as that corresponding

to Table 4 to assess the size, i.e.,

yt = �1 + �21(t > [0:5T ]) + et; (S.8)

with et drawn from one of the four types of non-normal distributions. Again, the errors are

standardized to have mean zero and variance one in each Monte Carlo repetition. We set

�1 = 0 and the truncation " = 0:15, although we obtained similar results for other choices

of ". Table S.5 shows that the size distortions are minor in all cases. To assess the power

of the supLR2;T test, we use again DGP (S.8). The errors are standardized to have mean

zero and variance one when t � [0:25T ] and 1 + � when t > [0:25T ] so that � indicates the

magnitude of the break. The results are presented in Table S.6. Relative to the results in

Table 5, we have, as expected, some power reductions. The extent of the power losses vary

across the di¤erent distributions. Nevertheless, the test remains informative.

F: Size and Power of the supLR�1;T test in the case of normal errors.

Table S.7 presents results related to Table 2 for the statistic supLR�1;T when testing for

a single break in variance assuming no break in regression coe¢ cients but with the static

model and normal errors. The DGP is yt = et with et � i:i:d:N(0; 1 + �I(t > [:5T ]) and �

varies between 0 and 1.5. The trimming parameter is set to " = 0:15. The results show that

using  ̂ with the full correction yields power and exact size similar to tests with a correction

that correctly assumes i:i:d: errors, though here imposing normality can lead to tests with

somewhat higher power. This con�rms that using the full correction entails little power loss

or size distortions.

We also investigate the �ndings that the UDmaxLR1;T test can have power close to that

of supLR�1;T under a single break model even though the former considers a wider range of

alternatives by using a simple design with normal errors. We also compare them with the

CUSQ test described in the main text. We use the same DGP and the results are presented

in Table S.8. They show the exact sizes of the supLR�1;T and UDmaxLR1;T tests to be close

to the nominal 5% size. The CUSQ test is slightly undersized. The power functions of the

three tests are very close.
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G: Size of the supLR�4;T and UDmax tests in the case of normal errors.

We present results about the size properties of the supLR�4;T and UDmax tests with

normal i:i:d: errors, with the DGP set to yt = et � i:i:d: N(0; 1). We use three values of the

trimming parameter " = 0:1; 0:15 and 0:2. For the UDmax test, M = N = 2 and for the

supLR�4;T test, we consider the following combinations: a) ma = na = 1, b) ma = 1, na = 2,

c) ma = 2, na = 1. Two sample sizes are used, T = 100, 200. The results are presented in

Table S.9 and they show the size to be slightly conservative, as expected since the critical

values are from a limit distribution that provides an upper bound. Nevertheless, the size is

close to the nominal 5% level in every case.

H: Split-sample method to select the number of breaks.

We present results for a split-sample method to estimate the number of breaks in � and

�2. It is based on a speci�c to general sequential procedure which is a modi�cation of the

sequential procedure discussed in Qu and Perron (2007). Our problem is, however, more

complex since we wish to ascertain what types of break occur at any given selected break

date, not only to know whether some kind of break did occur. Hence, the need for some

re�nements. The starting point is to consider the testing problem for the number of breaks

in the union of the coe¢ cients and variance breaks K. This is implemented by using the

SeqT (l + 1jl) test proposed by Qu and Perron (2007). The next step is to decide whether
a break in coe¢ cients, in variance or in both has occurred at each of the selected break

dates. We then perform standard hypothesis testing for the equality of the parameters

across adjacent segments. Since the limit distribution of the estimates of the parameters

of the model are the same whether using estimates of the break dates or their true value,

standard procedures can be applied. Consider �rst the case of testing whether the regression

coe¢ cients are equal across the two regimes (T̂k�1; T̂k), regime k, and (T̂k; T̂k+1), regime k+1,

separated by the kth break (k = 1; :::; K). Denote the true value of the regression coe¢ cients

in regimes k and k+1 by �k and �k+1, respectively. The null and alternative hypotheses are

H0 : �k = �k+1 and H1 : �k 6= �k+1. Note that since there is a break in � and/or �2, under

H0 there must be a change in �2. Hence, the test to be applied is a standard Chow-type test

allowing for a change in variance across regimes (see Goldfeld and Quandt, 1978). Consider

now the testing problem H0 : �
2
k = �2k+1 versus H1 : �

2
k 6= �2k+1, where �

2
k and �

2
k+1 are the
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error variances in regimes k and k + 1, respectively. The Wald test is

Wk =
(T̂k � T̂k�1)(T̂k+1 � T̂k)

(T̂k+1 � T̂k�1)(�̂4 � �̂4)

�
�̂2k+1 � �̂2k

�2
;

where �̂2k and �̂2k+1 are the MLE of �
2
k and �2k+1 (constructed allowing � to be di¤erent

in regimes k and k + 1), and �̂4 is a consistent estimate of E(u
4
t ), e.g., �̂4 = (T̂k+1 �

T̂k�1)
�1PT̂k+1

T̂k�1+1
û4t , constructed under H1 to maximize power. The simulation design is the

same as stated in Section 6. The results for this split-sample approach are presented in Table

S.10. Of note, there are cases for which the probability of making the correct selection is

quite low; e.g., when both changes in mean and variance are not large and occur at di¤erent

dates, especially when they are far apart. The basic reason for that is that the sequential

test of Qu and Perron (2007) jointly tests whether a break in both regression coe¢ cients and

variance occur. Hence, if only one type of break occurs the power can be quite low unless

the magnitudes of the breaks are large. Unfortunately, this situation is expected to be quite

common in practice (see, Perron and Yamamoto, 2019). Hence, though this procedure is

valid in large samples, it should not be applied mechanically. Care must be exercised to

assess whether we are in a situation where its �nite sample properties are rather poor.
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Table S.1: Size of the supLR�4;T using di¤erent estimates of  in the case of GARCH(1,1) errors
(DGP: yt = et, et = ut

p
ht; with ut � i:i:d: N(0; 1), ht = �1 + 
e

2
t�1 + �ht�1, h0 = �1= (1� 
 � �),

�1 = 1, T = 100, " = 0:20, Alternative hypothesis: ma = 1; na = 1):

no correction alternative

n� 0.0 0.1 0.2 0.3 0.4 0.5

0.1 0.045 0.049 0.053 0.056 0.064 0.067

0.2 0.087 0.089 0.119 0.113 0.137 0.172

0.3 0.138 0.147 0.171 0.219 0.308 0.354

0.4 0.187 0.249 0.318 0.351 0.431 0.554

0.5 0.280 0.336 0.407 0.479 0.593 -


n� 0.0 0.1 0.2 0.3 0.4 0.5

0.1 0.063 0.066 0.076 0.062 0.079 0.104

0.2 0.076 0.095 0.113 0.111 0.146 0.158

0.3 0.103 0.114 0.147 0.147 0.218 0.279

0.4 0.112 0.139 0.187 0.187 0.289 0.382

0.5 0.142 0.172 0.233 0.233 0.360 -

null hybrid

n� 0.0 0.1 0.2 0.3 0.4 0.5

0.1 0.032 0.032 0.034 0.027 0.038 0.032

0.2 0.031 0.033 0.037 0.039 0.052 0.052

0.3 0.035 0.022 0.030 0.046 0.045 0.077

0.4 0.025 0.031 0.039 0.047 0.051 0.112

0.5 0.028 0.031 0.036 0.054 0.092 -


n� 0.0 0.1 0.2 0.3 0.4 0.5

0.1 0.038 0.035 0.037 0.035 0.054 0.055

0.2 0.036 0.041 0.054 0.052 0.059 0.084

0.3 0.040 0.041 0.041 0.063 0.091 0.116

0.4 0.036 0.041 0.062 0.069 0.094 0.166

0.5 0.033 0.047 0.065 0.091 0.122 -

Note: "no correction" speci�es  ̂ = 2; "alternative" speci�es that the unrestricted residuals are used to

construct  ̂ and bT ; "null" speci�es that the residuals imposing the null hypothesis are used to construct

 ̂ and bT , and "hybrid" speci�es that the residuals under the alternative are used to construct bT and the

residuals under the null hypothesis are used to construct  ̂.

Table S.2: Power of the supLR�4;T using di¤erent estimates of  in the case of GARCH(1) errors
(DGP: yt = �1 + �21(t > [0:25T ]) + et, et = ut

p
ht; with ut � i:i:d: N(0; 1),

ht = �1 + �21 (t > [0:75T ]) + 
e
2
t�1 + �ht�1, h0 = �1= (1� 
 � �), �1 = 1, � = 0:2, T = 100; " = 0:20):

a) small change in variance, large change in mean

 = 0:1 
 = 0:3 
 = 0:5

null hybrid null hybrid null hybrid

�2n�2 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5

0.5 0.201 0.222 0.206 0.250 0.148 0.183 0.173 0.197 0.112 0.102 0.147 0.150

1 0.714 0.705 0.719 0.711 0.534 0.565 0.559 0.588 0.399 0.385 0.417 0.391

1.5 0.977 0.979 0.978 0.980 0.911 0.893 0.919 0.901 0.752 0.740 0.760 0.757

2 1.000 1.000 1.000 1.000 0.992 0.997 0.991 0.995 0.944 0.928 0.952 0.923

b) small change in mean, large change in variance

 = 0:1 
 = 0:3 
 = 0:5

null hybrid null hybrid null hybrid

�2n�2 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5

1 0.168 0.287 0.208 0.329 0.115 0.219 0.152 0.259 0.087 0.143 0.130 0.178

3 0.441 0.554 0.609 0.664 0.235 0.359 0.373 0.475 0.159 0.230 0.241 0.295

5 0.586 0.660 0.770 0.843 0.367 0.428 0.548 0.594 0.255 0.286 0.364 0.410

7 0.641 0.732 0.851 0.893 0.453 0.499 0.653 0.664 0.311 0.384 0.445 0.487

Note: "null" speci�es that the residuals imposing the null hypothesis are used to construct  ̂ and bT , and

"hybrid" speci�es that the residuals under the alternative are used to construct bT and the residuals under

the null hypothesis are used to construct  ̂.



Table S.3: Power of the supLR�4;T test using di¤erent corrections in the case of normal errors
(DGP: yt = �1 + �21(t > T c1 ) + et; et � i:i:d: N(0; 1 + �1(t > T v1 )), �1 = 0, �2 = �; " = 0:15)

T = 100
T c1= T v1= [:5T ] T c1= [:3T ], T

v
1= [:6T ] T c1= [:6T ], T

v
1= [:3T ]

� full i.i.d. NC full i.i.d. NC full i.i.d. NC
0 0.040 0.032 0.029 0.040 0.032 0.029 0.040 0.032 0.029

0.25 0.120 0.115 0.118 0.108 0.104 0.102 0.106 0.106 0.101

0.5 0.370 0.371 0.370 0.325 0.323 0.328 0.327 0.334 0.330

0.75 0.736 0.727 0.751 0.692 0.689 0.706 0.649 0.647 0.668

1 0.937 0.938 0.941 0.919 0.925 0.936 0.871 0.869 0.877

1.25 0.992 0.992 0.990 0.990 0.990 0.991 0.976 0.980 0.978

1.5 1.000 0.999 0.999 1.000 1.000 1.000 0.991 0.994 0.993

T = 200
T c1= T v1= [:5T ] T c1= [:3T ], T

v
1= [:6T ] T c1= [:6T ], T

v
1= [:3T ]

� full i.i.d. NC full i.i.d. NC full i.i.d. NC
0 0.035 0.036 0.033 0.035 0.036 0.033 0.035 0.036 0.033

0.25 0.227 0.228 0.237 0.168 0.177 0.185 0.199 0.207 0.217

0.5 0.746 0.758 0.764 0.709 0.712 0.712 0.678 0.676 0.673

0.75 0.989 0.987 0.991 0.984 0.982 0.982 0.961 0.963 0.964

1 1.000 0.999 1.000 1.000 1.000 1.000 0.997 0.997 0.998

1.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Note: The nominal size is 5% and 1,000 replications are used. The column "full" refers the test using the

correction  ̂ which allows for non-normal, conditionally heteroskesdatic and serially correlated errors, as

de�ned by (8); the column "i.i.d." refers to a correction that only allows for i.i.d. non-normal errors, i.e.,

 ̂ = �̂4=�̂
4 � 1, where �̂2 = T�1

PT
t=1 û

2
t and �̂4 = T�1

PT
t=1 û

4
t with ût the residuals under the

null hypotheses; the column �NC�applies no correction and sets  ̂ = 2, which is valid with normal errors.

2



Table S.4: Size and power of the supLR1,T (na = 1, ε), UDmaxLR1,T and CUSQ tests in a dynamic model with GARCH(1,1) errors

(a) t5 distribution

T = 100
α = 0.2 α = 0.7

γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.1 γ = 0.3 γ = 0.5
τ2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0.041 0.039 0.026 0.064 0.064 0.025 0.094 0.090 0.029 0.046 0.038 0.023 0.065 0.062 0.028 0.091 0.085 0.031

0.05 0.094 0.090 0.068 0.101 0.098 0.053 0.108 0.106 0.047 0.089 0.079 0.064 0.088 0.093 0.047 0.104 0.103 0.037

0.1 0.203 0.190 0.182 0.184 0.187 0.137 0.178 0.179 0.102 0.194 0.189 0.180 0.188 0.187 0.130 0.169 0.175 0.096

0.15 0.327 0.303 0.273 0.273 0.262 0.193 0.232 0.218 0.134 0.310 0.290 0.277 0.264 0.251 0.198 0.233 0.226 0.134

0.2 0.435 0.415 0.390 0.372 0.364 0.268 0.300 0.296 0.183 0.431 0.410 0.385 0.366 0.357 0.258 0.306 0.291 0.181

0.3 0.620 0.600 0.530 0.501 0.490 0.385 0.407 0.399 0.259 0.615 0.594 0.524 0.494 0.479 0.386 0.394 0.380 0.259

T = 200
α = 0.2 α = 0.7

γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.1 γ = 0.3 γ = 0.5
τ2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0.041 0.039 0.027 0.054 0.054 0.036 0.057 0.052 0.040 0.042 0.035 0.029 0.051 0.052 0.038 0.053 0.048 0.039

0.05 0.129 0.123 0.136 0.113 0.104 0.101 0.089 0.085 0.073 0.127 0.121 0.142 0.108 0.102 0.103 0.086 0.081 0.068

0.1 0.358 0.340 0.369 0.279 0.262 0.258 0.229 0.207 0.169 0.367 0.347 0.375 0.275 0.248 0.254 0.213 0.194 0.169

0.15 0.560 0.536 0.565 0.420 0.403 0.388 0.294 0.279 0.257 0.557 0.535 0.563 0.403 0.387 0.383 0.290 0.269 0.250

0.2 0.718 0.705 0.712 0.551 0.533 0.523 0.397 0.380 0.320 0.707 0.690 0.708 0.543 0.521 0.519 0.387 0.379 0.309

0.3 0.845 0.837 0.825 0.700 0.685 0.636 0.519 0.507 0.435 0.844 0.832 0.827 0.696 0.682 0.636 0.512 0.490 0.431



(b) mixture of normal distributions

T = 100
α = 0.2 α = 0.7

γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.1 γ = 0.3 γ = 0.5
τ2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0.102 0.105 0.037 0.107 0.117 0.041 0.110 0.121 0.042 0.067 0.062 0.026 0.109 0.109 0.036 0.112 0.119 0.049

0.05 0.184 0.186 0.128 0.141 0.156 0.085 0.143 0.157 0.086 0.213 0.207 0.188 0.191 0.184 0.135 0.145 0.151 0.082

0.1 0.350 0.343 0.268 0.241 0.255 0.146 0.231 0.246 0.135 0.477 0.462 0.452 0.349 0.335 0.265 0.224 0.236 0.142

0.15 0.522 0.509 0.429 0.335 0.325 0.216 0.329 0.323 0.218 0.714 0.695 0.703 0.510 0.493 0.418 0.320 0.309 0.211

0.2 0.639 0.632 0.552 0.428 0.430 0.285 0.439 0.446 0.287 0.851 0.840 0.828 0.637 0.628 0.533 0.423 0.413 0.273

0.3 0.785 0.769 0.677 0.581 0.573 0.389 0.555 0.544 0.386 0.949 0.939 0.906 0.783 0.763 0.664 0.558 0.546 0.393

T = 200
α = 0.2 α = 0.7

γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.1 γ = 0.3 γ = 0.5
τ2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0.059 0.062 0.037 0.065 0.068 0.042 0.051 0.050 0.043 0.059 0.058 0.029 0.063 0.067 0.040 0.051 0.049 0.041

0.05 0.373 0.359 0.411 0.243 0.236 0.241 0.143 0.137 0.126 0.364 0.348 0.408 0.241 0.231 0.236 0.141 0.132 0.116

0.1 0.831 0.822 0.848 0.556 0.543 0.566 0.307 0.292 0.272 0.827 0.815 0.848 0.548 0.538 0.558 0.296 0.286 0.265

0.15 0.968 0.962 0.973 0.758 0.750 0.761 0.455 0.441 0.399 0.965 0.960 0.974 0.754 0.744 0.747 0.438 0.426 0.389

0.2 0.995 0.995 0.996 0.867 0.864 0.864 0.584 0.575 0.528 0.996 0.996 0.995 0.869 0.863 0.868 0.577 0.567 0.527

0.3 1.000 1.000 0.999 0.954 0.948 0.930 0.726 0.702 0.634 1.000 1.000 0.999 0.951 0.944 0.923 0.703 0.690 0.629



(c) χ25 distribution

T = 100
α = 0.2 α = 0.7

γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.1 γ = 0.3 γ = 0.5
τ2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0.024 0.025 0.015 0.054 0.050 0.029 0.087 0.092 0.041 0.025 0.025 0.015 0.051 0.048 0.026 0.081 0.087 0.044

0.05 0.085 0.080 0.068 0.095 0.092 0.059 0.111 0.116 0.055 0.083 0.073 0.069 0.091 0.088 0.058 0.101 0.112 0.050

0.1 0.191 0.178 0.169 0.188 0.177 0.130 0.170 0.176 0.099 0.195 0.187 0.159 0.180 0.182 0.135 0.169 0.170 0.092

0.15 0.359 0.329 0.309 0.307 0.293 0.227 0.260 0.254 0.153 0.356 0.329 0.304 0.302 0.282 0.223 0.251 0.259 0.153

0.2 0.510 0.490 0.448 0.427 0.414 0.333 0.334 0.324 0.213 0.509 0.487 0.443 0.408 0.391 0.315 0.320 0.321 0.208

0.3 0.637 0.614 0.573 0.548 0.536 0.416 0.434 0.432 0.284 0.628 0.616 0.559 0.543 0.522 0.407 0.426 0.409 0.280

T = 200
α = 0.2 α = 0.7

γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.1 γ = 0.3 γ = 0.5
τ2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0.031 0.028 0.025 0.044 0.041 0.031 0.053 0.053 0.042 0.032 0.032 0.029 0.044 0.043 0.035 0.050 0.050 0.049

0.05 0.140 0.134 0.133 0.136 0.124 0.116 0.118 0.109 0.085 0.138 0.129 0.135 0.130 0.124 0.107 0.109 0.102 0.084

0.1 0.388 0.366 0.415 0.282 0.259 0.260 0.196 0.182 0.145 0.370 0.348 0.384 0.270 0.247 0.261 0.187 0.178 0.157

0.15 0.623 0.603 0.633 0.478 0.455 0.438 0.333 0.326 0.260 0.645 0.623 0.650 0.466 0.447 0.429 0.325 0.310 0.256

0.2 0.781 0.761 0.790 0.601 0.593 0.576 0.415 0.404 0.329 0.765 0.744 0.766 0.592 0.581 0.560 0.408 0.393 0.326

0.3 0.926 0.915 0.911 0.786 0.775 0.732 0.589 0.573 0.493 0.911 0.901 0.895 0.785 0.766 0.734 0.575 0.564 0.470



(d) exponential distribution

T = 100
α = 0.2 α = 0.7

γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.1 γ = 0.3 γ = 0.5
τ2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0.032 0.029 0.018 0.047 0.044 0.028 0.062 0.066 0.032 0.034 0.029 0.018 0.042 0.039 0.024 0.057 0.058 0.028

0.05 0.067 0.061 0.051 0.093 0.088 0.056 0.110 0.110 0.060 0.069 0.062 0.046 0.097 0.092 0.063 0.114 0.116 0.058

0.1 0.129 0.117 0.075 0.140 0.132 0.081 0.148 0.143 0.073 0.122 0.118 0.070 0.121 0.120 0.077 0.137 0.134 0.070

0.15 0.218 0.200 0.153 0.215 0.203 0.138 0.227 0.212 0.118 0.220 0.202 0.157 0.211 0.199 0.137 0.209 0.198 0.110

0.2 0.274 0.257 0.198 0.259 0.255 0.161 0.254 0.250 0.139 0.275 0.255 0.209 0.262 0.250 0.165 0.249 0.240 0.128

0.3 0.445 0.419 0.334 0.407 0.393 0.259 0.374 0.363 0.231 0.440 0.409 0.328 0.386 0.372 0.249 0.355 0.340 0.215

T = 200
α = 0.2 α = 0.7

γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.1 γ = 0.3 γ = 0.5
τ2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0.029 0.025 0.025 0.044 0.041 0.036 0.058 0.055 0.036 0.031 0.024 0.026 0.040 0.039 0.034 0.050 0.046 0.034

0.05 0.099 0.090 0.089 0.098 0.089 0.083 0.114 0.104 0.083 0.091 0.082 0.090 0.094 0.084 0.080 0.105 0.095 0.081

0.1 0.232 0.214 0.226 0.202 0.188 0.178 0.188 0.177 0.135 0.232 0.215 0.228 0.202 0.184 0.178 0.185 0.173 0.131

0.15 0.364 0.350 0.355 0.307 0.303 0.262 0.267 0.252 0.201 0.370 0.348 0.347 0.307 0.291 0.261 0.254 0.240 0.194

0.2 0.539 0.517 0.512 0.452 0.437 0.409 0.380 0.360 0.291 0.537 0.508 0.515 0.444 0.428 0.395 0.358 0.341 0.281

0.3 0.717 0.701 0.676 0.593 0.584 0.525 0.478 0.469 0.365 0.717 0.699 0.667 0.583 0.579 0.523 0.465 0.453 0.366



Table S.5: Size of the sup LR�2;T (ma = 1; na = 1; "jn = 0;ma = 1) test under non-normal errors
(" = 0:15)

T = 100 T = 200
�2 (a) (b) (c) (d) (a) (b) (c) (d)

0 0.020 0.039 0.033 0.047 0.021 0.031 0.039 0.042

0.1 0.021 0.035 0.036 0.031 0.024 0.030 0.032 0.035

0.25 0.014 0.040 0.029 0.039 0.021 0.034 0.034 0.027

0.5 0.024 0.040 0.032 0.033 0.015 0.032 0.031 0.032

0.75 0.031 0.039 0.027 0.033 0.013 0.029 0.027 0.024

1 0.029 0.027 0.026 0.033 0.015 0.039 0.030 0.026

2 0.016 0.027 0.014 0.030 0.022 0.033 0.030 0.018

4 0.025 0.027 0.018 0.032 0.020 0.028 0.021 0.031

10 0.022 0.033 0.020 0.024 0.022 0.040 0.016 0.023

20 0.020 0.039 0.017 0.026 0.029 0.025 0.023 0.029

Note: (a) the t5 distribution, (b) the mixture of normal distributions,
(c) the �25 distribution.; (d) the exponential distribution.



Table S.6: Power of the sup LR�2;T (ma = 1; na = 1; "jn = 0;ma = 1) test under non-normal errors
(" = 0:1)

T = 100
(a) t5 distribution (b) mixture of normal distributions

�n�2 0 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20

0.25 0.028 0.034 0.027 0.034 0.033 0.029 0.025 0.073 0.063 0.049 0.060 0.059 0.089 0.080

0.5 0.039 0.043 0.040 0.055 0.037 0.054 0.047 0.117 0.121 0.111 0.137 0.117 0.124 0.155

0.75 0.063 0.065 0.077 0.064 0.079 0.072 0.069 0.196 0.202 0.200 0.210 0.213 0.249 0.258

1 0.075 0.107 0.091 0.120 0.112 0.106 0.107 0.334 0.295 0.278 0.304 0.326 0.320 0.323

1.25 0.132 0.135 0.147 0.161 0.159 0.125 0.135 0.418 0.393 0.402 0.434 0.460 0.474 0.450

1.5 0.186 0.168 0.193 0.159 0.200 0.199 0.188 0.510 0.489 0.473 0.479 0.553 0.541 0.586

2 0.259 0.245 0.252 0.305 0.297 0.297 0.281 0.668 0.677 0.667 0.701 0.722 0.750 0.771

3 0.395 0.407 0.389 0.431 0.437 0.430 0.447 0.862 0.890 0.881 0.885 0.921 0.938 0.913

4 0.535 0.543 0.567 0.559 0.560 0.599 0.593 0.949 0.966 0.954 0.963 0.974 0.976 0.975

(c) �25 distribution (d) exponential distribution
�n�2 0 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20

0.25 0.051 0.052 0.036 0.029 0.034 0.027 0.033 0.041 0.048 0.048 0.025 0.021 0.035 0.032

0.5 0.066 0.061 0.062 0.038 0.046 0.055 0.059 0.062 0.066 0.059 0.031 0.042 0.045 0.051

0.75 0.092 0.102 0.089 0.095 0.089 0.090 0.071 0.087 0.085 0.078 0.063 0.059 0.066 0.048

1 0.128 0.133 0.131 0.122 0.112 0.122 0.133 0.101 0.091 0.085 0.086 0.068 0.085 0.071

1.25 0.150 0.167 0.183 0.182 0.170 0.157 0.163 0.127 0.116 0.112 0.125 0.098 0.093 0.095

1.5 0.200 0.199 0.209 0.211 0.234 0.229 0.231 0.142 0.141 0.125 0.142 0.119 0.133 0.128

2 0.311 0.289 0.294 0.281 0.313 0.280 0.305 0.181 0.174 0.205 0.169 0.176 0.151 0.162

3 0.482 0.459 0.447 0.435 0.472 0.497 0.495 0.276 0.260 0.262 0.272 0.269 0.251 0.291

4 0.599 0.572 0.590 0.555 0.617 0.625 0.603 0.357 0.376 0.360 0.350 0.355 0.381 0.377

T = 200
(a) t5 distribution (b) mixture of normal distributions

�n�2 0 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20

0.25 0.030 0.037 0.031 0.041 0.033 0.044 0.046 0.089 0.083 0.071 0.097 0.093 0.112 0.088

0.5 0.066 0.073 0.079 0.068 0.066 0.073 0.077 0.235 0.241 0.216 0.254 0.274 0.259 0.261

0.75 0.125 0.119 0.115 0.137 0.145 0.141 0.138 0.441 0.453 0.424 0.458 0.509 0.489 0.518

1 0.177 0.181 0.217 0.206 0.214 0.224 0.241 0.624 0.629 0.607 0.694 0.717 0.734 0.715

1.25 0.252 0.273 0.251 0.326 0.287 0.315 0.337 0.781 0.796 0.759 0.834 0.844 0.864 0.846

1.5 0.361 0.323 0.353 0.408 0.395 0.436 0.383 0.893 0.904 0.887 0.917 0.938 0.940 0.943

2 0.511 0.513 0.507 0.532 0.563 0.542 0.543 0.976 0.978 0.975 0.989 0.988 0.990 0.993

3 0.730 0.726 0.727 0.748 0.758 0.775 0.773 1.000 0.999 1.000 1.000 0.999 1.000 1.000

4 0.842 0.833 0.838 0.853 0.874 0.875 0.840 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(c) �25 distribution (d) exponential distribution
�n�2 0 0.1 0.5 2 4 10 20 0 0.1 0.5 2 4 10 20

0.25 0.052 0.041 0.051 0.034 0.041 0.044 0.040 0.045 0.054 0.035 0.035 0.032 0.023 0.028

0.5 0.097 0.114 0.090 0.083 0.091 0.091 0.084 0.074 0.058 0.077 0.052 0.052 0.061 0.042

0.75 0.174 0.164 0.182 0.133 0.152 0.159 0.197 0.105 0.105 0.099 0.076 0.075 0.076 0.104

1 0.258 0.239 0.250 0.248 0.235 0.252 0.253 0.147 0.154 0.131 0.135 0.135 0.115 0.147

1.25 0.341 0.354 0.322 0.337 0.339 0.363 0.361 0.196 0.185 0.194 0.178 0.178 0.184 0.186

1.5 0.461 0.432 0.410 0.409 0.442 0.450 0.452 0.226 0.232 0.231 0.258 0.258 0.237 0.226

2 0.597 0.599 0.598 0.627 0.598 0.601 0.608 0.314 0.342 0.337 0.332 0.332 0.362 0.337

3 0.803 0.767 0.789 0.817 0.822 0.822 0.816 0.512 0.517 0.539 0.532 0.532 0.541 0.503

4 0.900 0.903 0.889 0.917 0.916 0.915 0.912 0.644 0.698 0.652 0.668 0.668 0.664 0.692



Table S.7: Size and power of the supLR�1;T test using di¤erent corrections in the case of i.i.d. normal errors
(DGP: yt = et; et � i:i:d: N(0; 1 + �1(t > [:5T ])), " = 0:15)

T = 100 T = 200
� full i.i.d. NC full i.i.d. NC
0 0.049 0.043 0.054 0.045 0.045 0.046

0.25 0.064 0.079 0.090 0.112 0.120 0.131

0.5 0.150 0.162 0.195 0.324 0.327 0.371

0.75 0.282 0.289 0.340 0.572 0.582 0.641

1 0.380 0.415 0.505 0.781 0.790 0.857

1.25 0.525 0.523 0.654 0.894 0.903 0.938

1.5 0.610 0.644 0.751 0.958 0.942 0.969
Note: The nominal size is 5% and 1,000 replications are used. The column "full" refers to the tests using

the correction  ̂ which allows for non-normal, conditionally heteroskesdatic and serially correlated errors,

as de�ned by (8); the column "i.i.d." refers to a correction that only allows for i.i.d. non-normal errors, i.e.,

 ̂ = �̂4=�̂
4 � 1, where �̂2 = T�1

PT
t=1 û

2
t and �̂4 = T�1

PT
t=1 û

4
t with ût the residuals under the

null hypotheses; the column �NC�applies no correction and sets  ̂ = 2, which is valid with normal errors.

Table S.8: Size and power of the sup LR�1;T (na = 1); UDmaxLR1;T and CUSQ tests in the case of i.i.d.
normal errors

(DGP: yt = et; et � i:i:d: N(0; 1 + �1(t > [:5T ])) , " = 0:15)
T = 100 T = 200

� sup LR�1;T UDmax CUSQ sup LR�1;T UDmax CUSQ

0 0.049 0.051 0.030 0.045 0.044 0.029

0.25 0.064 0.064 0.059 0.112 0.108 0.116

0.5 0.150 0.136 0.142 0.324 0.302 0.351

0.75 0.282 0.259 0.268 0.572 0.554 0.613

1 0.380 0.356 0.391 0.781 0.762 0.808

1.25 0.525 0.497 0.521 0.894 0.889 0.918

1.5 0.610 0.588 0.599 0.958 0.951 0.965

Table S.9: Size of the sup LR�4;T (ma; na) and UDmaxLR4;T tests in the case of i.i.d. normal errors
(DGP: yt = et, et � i:i:d: N(0; 1))

T=100

" ma= na= 1 ma= 1; na= 2 ma= 2; na= 1 UDmax

0.2 0.039 0.043 0.042 0.042

0.15 0.040 0.035 0.043 0.039

0.1 0.041 0.043 0.042 0.042

T=200

" ma= na= 1 ma= 1; na= 2 ma= 2; na= 1 UDmax

0.2 0.040 0.036 0.040 0.044

0.15 0.037 0.037 0.042 0.044

0.1 0.040 0.041 0.038 0.039



Table S.10: Finite sample performance of the split-sample procedure to select the number of breaks in coefficients and variance

(DGP: yt = μ1 + μ21(t > T
c) + et, et ∼ i.i.d. N(0, 1 + θ1(t > T v)), ε = 0.15, T = 200).

m = n = 0 m = n = 1 m = n = 1
T c= [.5T ], T v= [.7T ] T c= [.25T ], T v= [.75T ]

μ2= θ = 1 μ2= 1, θ = 3 μ2= 1, θ = 5 μ2= θ = 2 μ2= θ = 1 μ2= θ = 2 μ2= 1, θ = 3
prob(m = 0, n = 0) 0.930 0.002 0.000 0.000 0.000 0.014 0.000 0.015

prob(m = 0, n = 1) 0.022 0.000 0.009 0.014 0.000 0.001 0.000 0.006

prob(m = 0, n = 2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

prob(m = 1, n = 0) 0.030 0.313 0.001 0.001 0.018 0.571 0.186 0.031

prob(m = 1, n = 1) 0.013 0.618 0.880 0.856 0.922 0.331 0.714 0.822
prob(m = 1, n = 2) 0.001 0.014 0.050 0.076 0.016 0.032 0.037 0.072

prob(m = 2, n = 0) 0.001 0.006 0.000 0.000 0.000 0.006 0.000 0.000

prob(m = 2, n = 1) 0.002 0.040 0.054 0.045 0.039 0.042 0.058 0.051

prob(m = 2, n = 2) 0.001 0.007 0.006 0.008 0.005 0.003 0.005 0.003

prob(K̄ = 0) 0.930 0.002 0.000 0.000 0.000 0.014 0.000 0.015

prob(K̄ = 1) 0.064 0.827 0.327 0.125 0.496 0.679 0.226 0.059

prob(K̄ = 2) 0.006 0.171 0.673 0.875 0.504 0.307 0.774 0.926

m = n = 1 m = 1, n = 0 m = 0, n = 1
T c= T v= [.5T ] T c= [.5T ] T v= [.5T ]

μ2= θ = 1 μ2= 1, θ = 3 μ2= 1 μ2= 2 μ2= 3 θ = 1 θ = 2 θ = 3
prob(m = 0, n = 0) 0.000 0.000 0.000 0.000 0.000 0.379 0.020 0.000

prob(m = 0, n = 1) 0.001 0.009 0.000 0.000 0.000 0.518 0.883 0.907
prob(m = 0, n = 2) 0.000 0.000 0.000 0.000 0.000 0.002 0.005 0.007

prob(m = 1, n = 0) 0.080 0.000 0.907 0.908 0.916 0.007 0.000 0.001

prob(m = 1, n = 1) 0.887 0.951 0.056 0.061 0.048 0.080 0.073 0.069

prob(m = 1, n = 2) 0.004 0.010 0.005 0.008 0.004 0.001 0.003 0.006

prob(m = 2, n = 0) 0.000 0.000 0.024 0.016 0.017 0.001 0.001 0.000

prob(m = 2, n = 1) 0.023 0.022 0.004 0.006 0.011 0.009 0.013 0.010

prob(m = 2, n = 2) 0.005 0.008 0.004 0.001 0.004 0.003 0.002 0.000

prob(K̄ = 0) 0.000 0.000 0.000 0.000 0.000 0.379 0.020 0.000

prob(K̄ = 1) 0.962 0.951 0.960 0.962 0.958 0.588 0.940 0.966

prob(K̄ = 2) 0.038 0.049 0.040 0.038 0.042 0.033 0.040 0.034

Note: prob(m = j, n = i) represents the probability of choosing j breaks in mean and i breaks in variance, and prob(K̄ = j) denotes
the probability of selecting j total breaks in either mean or variance. The upper bound for the total number of breaks is set to 2.
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Figure S.1. Local asymptotic power functions of the supLR1;T and CUSQ tests
(�v0 = 0:3; 0:5 and 0:7)
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Figure S.2. Local asymptotic power functions of the supLR2;T and CUSQ tests
(�v0 = 0:3; 0:5 and 0:7; �c0 = 0:3; 0:5 and 0:7)
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