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Abstract

We propose a new procedure to select the unknown frequencies of a trigonometric
function, a problem �rst investigated by Anderson (1971) under the assumption of
serially uncorrelated noise. We extend the analysis to general linear processes without
the prior knowledge of a stationary or integrated model allowing the frequencies to be
unknown. We provide a consistent model selection procedure. We �rst show that if we
estimate a model with fewer frequencies than those in the correct model, the estimates
converge to a subset of the frequencies in the correct model. This opens the way to a
consistent model selection strategy based on a speci�c to general procedure that tests
whether additional frequencies are needed. This is achieved using tests based on the
feasible �super e¢ cient�(under unit root noise) Generalized Least Squares estimator of
Perron, Shintani and Yabu (2017) who assumed the frequencies to be known. We show
that the limiting distributions of our test statistics are the same for both cases about
the noise function. Simulation results con�rm that our frequency selection procedure
works well with sample sizes typically available in practice. We illustrate the usefulness
of our method via applications to unemployment rates and global temperature series.
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1 Introduction

We consider the issue of selecting trigonometric terms when the trend of a univariate time

series is periodic whether with a trending component or with a �xed mean. This problem was

�rst investigated by Anderson (1971) under the assumption of a serially uncorrelated random

noise component. We generalize his results to provide a consistent model selection procedure

robust to serial correlation in the noise of unknown form allowing I(0), i.e., stationary, or

I(1), i.e., integrated process with an autoregressive root on the unit circle. The goal is

to determine whether there is a need to consider a simple linear trend or a more general

nonlinear one. The main issue is that the limiting distributions of statistics to test for the

presence of nonlinearities in the trend depends on the order of integration which is also

unknown. On the other hand, testing whether the noise component is I(0) or I(1) depends

on the nature of the deterministic trend (e.g., Perron, 1989, 1990, for the cases of abrupt

structural changes in slope or level). In particular, if the trend is misspeci�ed, unit root

(and other misspeci�cation) tests, will lose power and can be outright inconsistent (e.g.,

Perron, 1988, Campbell and Perron, 1991). Hence, we are faced with a circular problem

and what is needed is a procedure to test for nonlinearity that is robust to the possibilities

of I(0) or I(1) noise components. We circumvent this circular problem using the feasible

GLS estimator proposed by Perron, Shintani and Yabu (2017); henceforth PSY, following

work by Perron and Yabu (2009a,b), which uses a so-called super-e¢ cient estimator of the

sum of the autoregressive coe¢ cients when the errors are I(1), though they required the

assumption of known frequencies. We �rst show that if we estimate a model with fewer (or

the same number of) frequencies than those in the correct model, our suggested estimates

converge to a subset (or all) of the frequencies in the correct model. This opens the way to a

consistent model selection strategy based on a speci�c to general procedure that tests whether
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additional frequencies are needed. The problem is to obtain tests that have the same limit

distribution under both I(0) and I(1) noise. We propose two tests, mean and sup-type tests,

that achieve this goal. We show that the limiting distributions of our proposed test statistics

are the same for both I(0) and I(1) noise even if the frequencies in the trigonometric function

are unknown. This contrasts with the results of tests for structural breaks at unknown dates

(Perron and Yabu, 2009b).

The use of trigonometric functions is motivated by the observed regular �uctuations in

time series data which are referred to as cyclical trends by Anderson (1971). In principle,

frequencies in cyclical trends can be selected by testing zero restrictions on the amplitudes,

namely, the coe¢ cients on trigonometric functions. However, unlike the case of a polynomial

trend function where there is a clear ordering of the degrees of the polynomials, there is no a

priori meaningful ordering of the frequencies. Furthermore, as emphasized by Davies (1987),

the frequencies are not identi�ed under the null hypothesis of no cyclical component. Ander-

son (1971) circumvents this problem in a way that is similar to the approach typically used

for problems related to structural breaks (e.g., Andrews, 1993, and Andrews and Ploberger,

1994). Our procedure generalizes Anderson�s (1971) approach to cover a broader class of

time series data and o¤ers new procedures that provide reliable inference in practice whether

the noise component is I(0) or I(1), a feature that can be especially useful if one wants to

assess the nature of the noise component using some unit root test (or other misspeci�cation

test).

Trigonometric functions have also been used to represent the seasonal, trend and irregular

components (e.g., Harvey, 1993). Gao and Tsay (2019) used this approach with a prespeci�ed

seasonal frequency when analyzing high-dimensional multivariate time series with the noise

components allowed to be I(0) or I(1). An alternative interpretation is to use trigonometric

functions as a base function for Fourier approximations to model general nonlinear trend
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functions. For example, Becker et al. (2004) used this approach to approximate the time-

varying coe¢ cients in a regression model with the aim of testing for parameter constancy,

while Becker et al. (2006) used it to capture an unknown form of structural break in their

test for stationarity. In both cases, the noise is I(0) and the number of frequencies is assumed

known while which frequencies to include is done via some tests. Trigonometric functions

have also been used in the context of unit root tests; e.g., Enders and Lee (2012a, 2012b) and

Rodrigues and Taylor (2012). Testing for trigonometric trend allowing both I(0) and I(1)

noise have been investigated by Harvey et al. (2010), Astill et al. (2015) and PSY assuming

a known set of frequencies, or using some sequential procedure to determine the maximum

frequency.

The paper is structured as follows. Section 2 presents the trigonometric trend model, the

statistical procedures and the theoretical results about the consistent selection of the fre-

quencies. Section 3 assesses the adequacy of our proposed methods via simulations. Section

4 illustrates their usefulness via applications to unemployment rates and aggregate temper-

atures series. An appendix contains the proofs of the results stated in the text.

2 The Trigonometric Trend Model and the Statistical Procedures

We describe the model in Section 2.1 focusing �rst on the AR(1) case for clarity of exposi-

tion. Sections 2.2 contains the main theoretical results about the consistent selection of the

frequencies. Section 2.3 discusses the modi�cations needed for general linear processes in the

noise component via an autoregressive approximation and to allow for a trending component.

2.1 The model

Following Anderson (1971), we consider a scalar random variable yt be generated by:

yt = �0 +
mX
j=1

f
1j sin (2�kjt=T ) + 
2j cos (2�kjt=T )g+ ut (1)
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where ut = �ut�1 + et;�1 < � � 1 for t = 1; :::; T with Km= (k1; : : : ; km) 2 � = f1; :::; ng,

n is the upper bound on the frequencies, et is a martingale di¤erence sequence with respect

to the sigma-�eld Ft generated by fet�s; s � 0g, i.e., E(etjFt�1) = 0, with E(e2t ) = �2 and

E(e4t ) < 1. Also, u0 = Op(1). For now we focus on the AR(1) case with �1 < � � 1,

so that both stationary, I(0) with j�j < 1, and integrated, I(1) with � = 1, processes are

allowed. The validity of our methods with a more general structure for ut will be discussed

later. Note that the indices kj are nonnegative integers for j = 1; :::;m where m is the total

number of frequencies, which can take values in a proper subset of all the integers from 1 to

n provided m < n. For example, when m = 2 and n = 3, K2 = (k1; k2) can be either (1; 2),

(1; 3) or (2; 3). In general, the number of possible choices of Km is nCm.

If the set of frequencies Km= (k1; : : : ; km) is known, the model can be estimated by

using the following feasible GLS (FGLS) estimator even if the order of integration of ut

is unknown. Let xt = (1; sin(2�k1t=T ); cos(2�k1t=T ); :::; sin(2�kmt=T ); cos(2�kmt=T ))
0 and

	 = (�0; 
11; 
21; :::; 
1m; 
2m)
0 = (�0; 


0)0, y = (y1; :::; yT )0 and X = (x1; :::; xT )
0. Typically,

�̂ =
PT

t=2 ûtût�1=
PT

t=2 û
2
t�1 where ût = yt � x0t	̂OLS and 	̂OLS = (X 0X)�1X 0y, can be used

as an estimate of � required for a Cochrane and Orcutt (1949) type transformation. Instead,

we follow PSY and use �̂S = �̂ if j�̂ � 1j > T�1=2 and 1 otherwise. The estimator �̂S is

often referred to as super-e¢ cient as it converges to 1 at a rate faster than T when � = 1.

As explained in PSY, in order to have a limit distribution identical under both the I(0) and

I(1) cases, it is necessary to use the FGLS estimator 	̂ of Prais and Winsten (1954) which

minimizes SSRT (Km) =
PT

t=1(eyt � ex0t	̂)2, where ex0t = (1 � �̂SL)x0t, eyt = (1 � �̂SL)yt for

t = 2; :::; T , and ex01 = (1 � �̂2S)1=2x01, ey1 = (1 � �̂2S)1=2y1. Alternatively, in matrix format,

	̂ = ( eX 0 eX)� eX 0ey where eX = (ex1; :::; exT )0 is a T � (2m + 1) matrix of transformed data and
the T �1 vector ey = (ey1; :::; eyT )0 is similarly de�ned. Here, ( eX 0 eX)� is the generalized inverse
of eX 0 eX, which is needed since the �rst column of eX is asymptotically zero when � = 1.
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This poses no problem since we do not make inference about the constant �0. For known

Km, PSY considered testing the absence of a cyclical trend, H0 : 
1j = 
2j = 0 for all j,

against the alternative H1 : 
1j 6= 0 or 
2j 6= 0 for some j with the Wald statistic: Wb
(Km) =
	̂0R0[s2R( eX 0 eX)�R0]�1R	̂, where R = [0 : I2m] is a 2m � (2m + 1), s2 = T�1

PT
t=1 v̂

2
t and

v̂t = eyt � ex0t	̂. Their results imply that Wb
(k) converges to a chi-square distribution with
2m degrees of freedom, �2(2m), for both the I(0) and I(1) cases, i.e.,

Wb
(Km) ) [R(

Z 1

0

G(r)G(r)
0
dr)�

Z 1

0

G(r)dW (r)]0[R(

Z 1

0

G(r)G(r)
0
dr)�R0]�1 (2)

�[R(
Z 1

0

G(r)G(r)
0
dr)�

Z 1

0

G(r)dW (r)] � A(Km) =d �2(2m)

where G(r) = F (r) = [1; sin(2�k1r); cos(2�k1r); :::; sin(2�kmr); cos(2�kmr)]
0 if j�j < 1 and

G(r) = Q(r) = [0; 2�k1 cos(2�k1r);�2�k1 sin(2�k1r); :::, 2�km cos(2�kmr);�2�km sin(2�kmr)]

if � = 1. Below, we consider related statistical analyses whenKm = (k1; : : : ; km) is unknown.

2.2 Consistent selection of the frequencies

We use m0 as the true number of frequencies and m as the number included in the estimated

model. Correct speci�cation occurs when m = m0, while the model is underspeci�ed if

m < m0. The estimates of the frequencies is given by (k̂1; : : : ; k̂m) = argmin� SSRT (Km).

Theorem 1 Let yt be generated by (1) with 
1j = 
1j0 and 
2j = 
2j0 if j�j < 1; 
1j = 
1j0T h

and 
2j = 
2j0T
h (h > 1=2) if � = 1. Then, as T ! 1, a) if m = m0: (k̂1; : : : ; k̂m)

p!

(k1; : : : ; km0); b) if m < m0: for all j = 1; : : : ;m, P [k̂j =2 fk1; k2; : : : ; km0g]! 0.

The conditions of the theorem state that the coe¢ cients 
1j and 
2j increase with T when

� = 1. This is a needed theoretical device to ensure consistent estimates of the frequencies

since, when � = 1, the coe¢ cient estimates are not consistent for �xed values. Hence,

the results should be viewed as applying to large values when � = 1, though they are still
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relevant for moderate values as shown in the simulations of Section 3. The results �rst state

that (k̂1; : : : ; k̂m) are consistent estimates of (k1; : : : ; km0) for the correctly-speci�ed case

(m = m0). What is more relevant to develop a consistent model selection procedure is part

(b), which states that when the �tted model is underspeci�ed, the estimates nevertheless

converge to some of the true frequencies, those that minimize the overall SSR. This is what

is needed to develop a sequential procedure to consistently estimate the frequencies. This

result is akin to that in the structural change literature; i.e., when estimating a structural

change model with a number of changes lower than the true value, one still obtains consistent

estimates of a subset of the true break dates; see Bai and Perron (1998) and Bai (1997). We

next consider the construction of the relevant sequential test for consistent model selection.

Consider a model with ` frequencies included in (1) where 0 � ` � n � 1 so that

either 
1j or 
2j is non-zero for all j = 1; : : : ; `, and the values kj�s for j = 1; : : : ; `

are known (possibly via some prior testing procedure). We wish to test the null hypoth-

esis (H0) of no trigonometric trend at some additional frequency k`+1 (H0 : 
1;`+1 =


2;`+1 = 0) against the alternative hypothesis H1 : 
1;`+1 6= 0 or 
2;`+1 6= 0 at the un-

known frequency k`+1. In this setup, a parameter is not identi�ed under the null hypothe-

sis, namely k`+1. Following the structural change literature (e.g., Andrews, 1993, and An-

drews and Ploberger, 1994), we consider two tests: sup-W (` + 1) = supk`+12��`W
̂`+1(k`+1)

and Mean-W (` + 1) = (n � `)�1
P

k`+12��`W
̂`+1(k`+1), where ��` = �nfk1; : : : ; k`g and

W
̂`+1(k`+1) = 	̂
0R0[s2R( eX 0 eXX)�R0]�1R	̂, with eX = (ex1; :::; exT )0 a T � f2(` + 1) + 1g ma-

trix of transformed data whose tth-row is given by ex0t = (1 � �̂SL)x0t for t = 2; :::; T and

ex01 = (1� �̂2S)1=2x01, xt = (1; sin(2�k1t=T ); cos(2�k1t=T ); :::; sin(2�k`+1t=T ); cos(2�k`+1t=T ))0
and R = [02�(2`+1) : I2] is a 2 � f2(` + 1) + 1g restriction matrix. A simple modi�cation of

Theorem 1 of PSY yields: Wb
`+1(k`+1)) A(k`+1) as de�ned by (2). Hence, Wb
`+1(k`+1) has
the same �2(2) distribution under both I(0) and I(1) errors. We show that the same holds
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for the sup-W and Mean-W tests, even though the functionals F (r) and Q(r) are di¤erent.

Theorem 2 UnderH0 speci�ed above and for �1 < � � 1: sup-W (`+1)) supk`+12��` g(k`+1) �

supj2(1;:::;n�`)Aj, Mean-W (`+ 1)) (n� `)�1
P

k`+12��` g(k`+1) � (n� `)
�1Pn�`

j=1 Aj where

g(kj) =
[
R 1
0
sin(2�kjr)dW (r)]

2R 1
0
sin(2�kjr)2dr

+
[
R 1
0
cos(2�kjr)dW (r)]

2R 1
0
cos(2�kjr)2dr

and Aj =d �2(2):

It should be noted that the limit distribution depends only on n� `. The critical values,

valid for both the I(0) and I(1) cases, are provided in Table 1 for n � ` = 1; :::; 5. These

were obtained via simulations with one million replications. When n � ` = 1, (the known

frequency case) the critical values correspond to those of a �2(2), but are still reported for

convenience. Theorem 2 allows the following sequential procedure to estimate the number

and nature of the frequencies: 1) starting with ` = 0, use the sup-W (` + 1) or Mean-

W (`+1) test; if the null is not rejected, conclude for a model with ` frequencies estimated as

(k̂1; : : : ; k̂`) = argmin� SSRT (K`) ; 2) if the null is rejected, update ` to `+1 and repeat until

a non-rejection occurs or the maximal allowed value ` = n � 1 is attained. This procedure

will result in a consistent model selection if the size of the test converges to 0 slowly enough

for the tests to be consistent. This generalizes Anderson�s (1971) procedure valid with

uncorrelated errors. An alternative approach would use a general-to-speci�c procedure by

running a trigonometric trend regression using the largest allowed value n for the number of

frequencies and keeping only the components that are signi�cant according to a Wald test

applied to a pair of coe¢ cients for each frequency, again using the FGLS procedure. This

approach can be justi�ed using the asymptotic results of PSY. However, the simulations

reported below show that our proposed sequential procedure is preferable.
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2.3 Extensions to general linear processes and to trending series

The assumption of AR(1) errors is restrictive but can easily be extended to allow general

linear processes assuming that ut is generated by one of the following two structures: a)

I(0) noise: ut = C(L)et, C(L) =
P1

i=0 ciL
i,
P1

i=0 ijcij < 1, 0 < jC(1)j < 1; b) I(1) noise:

�ut = D(L)et, D(L) =
P1

i=0 diL
i,
P1

i=0 ijdij < 1, 0 < jD(1)j < 1. As before et is a

martingale di¤erence sequence (with E(e2t ) = �2) and u0 = Op(1). Then, �̂S is computed

based on the regression ût = �ût�1 +
PpT

i=1 a
�
i�ût�i + ept where pT ! 1 and p3T=T ! 0 as

T ! 1, with pT allowed to be in the range (0;int[12(T=100)1=4]). Let êpt be the estimated

residuals, then, s2 in the Wald statisticWb
(Km) needs to be replaced by (see PSY for details):
!̂2 =

8<: (T � pT )�1
PT

t=pT+1
ê2pt if j�̂� 1j > T�1=2

T�1
PT

t=1 v̂
2
t + T

�1PT�1
j=1 w(j;mT )

PT
t=j+1 v̂tv̂t�j if j�̂� 1j � T�1=2

(3)

where w(j;mT ) is a weight function with bandwidthmT . We use Andrews�(1991) automatic

selection procedure for mT along with the quadratic spectral window. When the sample size

is small and � is near one, the OLS estimator �̂ is known to be biased downward. Using

Roy and Fuller�s (2001) �upper-biased�corrected estimator turns out to be very e¤ective in

reducing the bias without changing any of the asymptotic results reported. The exact form

of the estimate is described in the appendix. See Roy et al. (2004), Perron and Yabu (2012),

and PSY for more details.

Theorem 2 showed the equivalence of the sup-W (`+1) andMean-W (`+1) between the

I(0) and I(1) cases for model (1) for which a linear time trend is not included. However, if �0

is replaced by �0+�1t, thereby allowing trending series, the equivalence no longer holds and

the limit distributions are di¤erent for the cases with I(0) and I(1) noise. For the I(1) case,

the limiting distributions of the test statistics will be the same as for the constant only case

so that the critical values are those in Table 1. For the I(0) case, the limiting distribution

di¤ers because the correlation of the linear trend and the sine function is not zero. Still, the
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two sets of critical values are very similar; see the supplement. Hence, one can safely use the

critical values in Table 1 expecting the same size in large samples.

3 Monte Carlo Experiments

We now present simulation results to assess the performance of our methods in �nite samples

typically available in practice. To investigate the methods to select the true frequencies based

on minimizing the SSR of the FGLS estimator, labelled the FGLS method (see Theorem 1),

we �rst generate data from a process with a single frequency k1 2 f1; 2; 3; 4; 5g:

yt = 
fsin(2�k1t=T ) + cos(2�k1t=T )g+ ut (4)

where ut = �ut�1 + et, 
 � 0, et � i:i:d: N(0; 1) and u0 = 0. We set � = 1:0 and 0:8 and

consider various values of 
; T = 200 and we use 10,000 replications 1. The FGLS method is

applied without assuming an AR(1) structure, we allow for an unknown AR(p) process with

p selected using the BIC and employ the bias correction method described in the appendix.

We compare its performance with two alternative procedures. The �rst is to select k1 by

minimizing the SSR from using OLS applied to (1) with one frequency. Such a procedure

has been considered in Becker et al. (2006) and is labelled as the OLS method 2. The second

is to select k1 by minimizing the SSR of the following Dickey-Fuller (1979) type regression

�yt = �0 + �yt�1 +
PpT

i=1�yt�i + 
1 sin (2�k1t=T ) + 
2 cos (2�k1t=T ) + et; (5)

considered by Enders and Lee (2012b) and labelled as the DF method (with pT selected using

BIC). The OLS and DF methods have been used to select the trigonometric components to

properly specify the trend function prior to performing unit root or stationarity tests. The

1While the results for the model without linear trend are reported here, we also conducted experiments
for the linear trend case and obtained similar results. The additional results are available in the supplement.

2No lagged variables were included for the OLS estimator as in Becker et al. (2016). We computed their
test using an estimate of the long-run variance to account for serial correlation. The results were similar.
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DF method is based on assuming I(1) errors to obtain the relevant limit distribution. It is

conservative under I(0) errors. On the other hand, the OLS method relies on critical values

derived assuming I(0) errors. Our results will show our procedure, valid under both I(1)

and I(0) errors, to perform at least as well, in general, than both the OLS and DF methods.

Table 2 shows the proportions of selecting the true k1 for each values of k1 from 1 to 5,

and the average of the correctly selected proportions among all �ve cases. Note that when


 = 0, k1 is not identi�ed; hence one would expect the estimates to be randomly distributed

across permissible values of k1 so that each is selected about 20% of the time. First, note

that the proportion of correctly selected frequencies increases with 
 in all cases. Second,

when � = 1:0, using the DF and FGLS methods yields more accurate selections in general

compared to using the OLS method. When 
 = 0, the DF (resp., OLS) method unreasonably

selects k1 = 1 in 47% (resp., 79%) of the cases, while the FGLS method selects all frequencies

equally 20% of the time. The OLS method performs very well when k1 = 1 but relatively

badly for other values. The FGLS method performs best overall when k1 > 1, though it

is inferior to DF when k1 = 1. Third, when � = 0:8, all three procedures perform equally

well. In summary, the FGLS method strikes the best balance in selecting the true frequency

when the number is known. The OLS procedure tends to select incorrect frequencies when

� = 1:0, so one should be careful when using it as a prior step to perform unit root tests.

The second set of simulation (Figures 1 and 2) pertains to the evaluation of the perfor-

mance of the sup-W and Mean-W tests to estimate the frequencies to be included for each

step of the sequential procedure. We consider testing the null hypothesis of no trigonometric

trend (m0 = ` = 0) against the alternative of one frequency (m0 = ` + 1 = 1) since this is

frequently used in practice. We set the number of candidate frequencies at n = 5. We com-

pare the properties of our tests to two others available in the literature. The �rst is a sup-F

test, similar to our sup-W , based on the OLS estimates of (1) considered by Anderson (1971)
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and Becker et al. (2006), labelled sup-OLS. Since it is based on the limiting distribution

assuming an I(0) noise, it is not expected to perform well when the noise is I(1). Enders

and Lee (2012b) considered a sup-F test based on the DF regression (5), labelled sup-DF .

The test is based on the limiting distribution obtained under the assumption of I(1) noise

and, hence, it is not expected to be robust to I(0) noise (Enders and Lee, 2012a, considered

a similar test for the model with a linear trend). To evaluate the exact size of the tests, we

generate data from (4) setting 
 = 0 for various values of �. We use 10; 000 replications and

critical values for nominal 5% size tests. We report results for T = 200 and 500.

The empirical size results are presented Figure 1 as a function of � varying from 0 to 1.

The exact size of the sup-OLS test quickly becomes very large as � gets further away from 0

and is therefore not reliable in the presence of serial correlation in the noise. In contrast, the

sup-DF test is signi�cantly undersized over the entire stationary region for � and achieves

an exact size close to 5% only when � is very close to 1, even when T = 500. Among the two

tests we propose, the rejection frequencies of the Mean-W is, in general, closer to the 5%

nominal size, especially when T = 200. The Mean-W test is conservative when � is near to

but not equal to 1, while in the same region the sup-W is slightly liberal. Both tests have

roughly the correct size when � = 1 or � is far from 1, especially when T = 500. Overall,

the results show that our tests have reasonable size properties for both the I(0) and I(1)

cases, and have much better properties than the sup-DF or sup-OLS procedures.

To evaluate the power of the tests, we henceforth omit the sup-OLS test given its very

bad size properties. Instead, as a benchmark, we include the infeasible GLS-based supremum

Wald test that uses the true value of �, labelled as sup-GLS, which is expected to provide

an upper bound on the power function. The data are generated from (4) setting 
 � 0 and

k1 = 2, which is assumed to be unknown when constructing the tests. We are interested in

the power performance of the tests for the unit root (� = 1:0) and stationary (� = 0:8) cases.
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We set 
 = 
0T
1=2 for the unit root case, while we set 
 = 
0T

�1=2 for the stationary case.

This is done in order to obtain results that pertain to the local asymptotic power of the tests.

The results are presented in Figure 2. When � = 1:0, the power functions of sup-W and

sup-GLS are almost indistinguishable. The power of the Mean-W test is slightly lower but

still clearly dominates that of the sup-DF even in the unit root case. In summary, amongst

the feasible tests, the highest power is achieved with sup-W followed by Mean-W .

Finally, we investigate the performance of sequential procedures to select the correct

combination of frequencies using our proposed sequential strategy based on either the sup-

W or Mean-W tests. Sequential procedures using other tests, such as sup OLS or sup DF

are not included. For purposes of comparisons, we also consider the selection frequency

using a general-to-speci�c procedure when the full model with all possible frequencies are

estimated by FGLS but keeping only the frequencies for which the zero restriction on a

pair of coe¢ cients (on the sine and cosine trend functions with a common frequency) is

rejected using a Wald test at the 5% signi�cance level. We consider two data generating

processes. The �rst uses data generated from (4) with 
 � 0, k1 = 2, 
 = 
0T 1=2 for the unit

root case and 
 = 
0T
�1=2 for the stationary case. We report the proportions of correctly

selecting a single frequency with k1 = 2 when the maximum number of frequency is set at

n = 5, with the total number of frequencies assumed unknown. If more than one frequency

are selected, it is not counted as a success or correct speci�cation, even if the frequency

2 is included. Figure 3 reports the proportions of success with T = 500 for � = 1:0 and

0:8 obtained from 10; 000 replications. Note that by construction the procedures involve a

type I error so that the proportion of successes cannot reach 100% re�ecting the fact that

over�tting cannot be avoided when the size of the test is �xed, though this problem can be

remedied in large samples adopting a size that decreases as T increases at some appropriate

rate. For both I(1) and I(0) cases, the general-to-speci�c procedure performs well when 
 is
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small, but the suggested speci�c-to-general sequential procedure performs markedly better

when 
 becomes larger. The nonincreasing power of the general-to-speci�c procedure for

large values of 
 comes from the fact that the procedure tends to over-specify the total

number of frequencies. Note that when 
 is relatively small, the cost of neglecting nonlinear

trend components is relatively minor. For these reasons, the speci�c-to-general sequential

procedure is preferable. We also considered a second experiment with data generated by

yt = 
fsin(2�k1t=T ) + cos(2�k1t=T ) + sin(2�k2t=T ) + cos(2�k2t=T )g+ ut (6)

where ut = �ut�1 + et, 
 � 0 with k1 = 2 and k2 = 3. All other settings are the same as

before. Figure 4 shows the proportions of success, correct speci�cation, with T = 500 for

� = 1:0 and 0:8. Overall, the results are similar to those for the single frequency model.

4 Empirical Applications

To illustrate the usefulness of our procedure, we consider �rst the estimation of cyclical

trends in unemployment rate series for the G7 countries. The monthly harmonized unem-

ployment rate series for Canada, France, Germany, Italy, Japan, UK and US were obtained

from the OECD database and a logarithmic transformation was applied. The sample period

is from January 1983 to July 2015 for all countries except Germany for which it is from

January 1991 to July 2015. The extracted nonlinear trend components may be interpreted

as estimates of the natural rates of unemployment, a conceptual unobserved component used

in macroeconomic policy. The unemployment gap de�ned as the deviations from the natural

rate is countercyclical and expected to be stationary. However, in a competing hysteresis

hypothesis on unemployment argued by Blanchard and Summers (1987), deviations from

the natural rates can be highly persistent and possibly permanent. Hence, to permit these

competing views it is important to allow for both I(0) and I(1) error components when
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estimating the nonlinear trend functions. We set n = 5 as the maximum number of frequen-

cies. We �rst determine whether to include a linear trend term using the asymptotic results

of PSY for the FGLS estimator of a model with all possible frequencies included (a 10%

size is used). We then estimate the frequencies of the trigonometric trend function using

the sequential procedure based on the Mean-W (` + 1) test with a 5% size with a maximal

value n = 5. The results are presented in Table 3(a), while Figure 5 shows the time series

plots of the unemployment rate series along with the estimated cyclical trends. The results

show clear statistically signi�cant evidence of nonlinear trends for all seven countries. The

linear trend component is absent, except for Italy and the UK. Overall, the selected �tted

non-linear trend captures very well the low-frequency variations in the series.

As a second application, we consider the estimation of a nonlinear trend for annual global,

northern and southern hemispheres temperature series from 1850 to 2010. The data used

are from the HadCRUT3 database (http://www.meto¢ ce.gov.uk/hadobs/hadcrut3/), which

were also used in Estrada et al. (2013a,b) and PSY. The data, graphed in Figure 6, suggest

that World War II and the Great Crash contributed to the mid-20th century cooling via

important reductions in CO2 emissions. There is also a marked increase in the growth rates

of temperatures near 1960, marking the start of sustained global warming. Since the mid-90s,

reductions in the emission of chloro�uorocarbons and methane contributed to the so-called

�hiatus�, a slowdown in the growth rate of temperatures. As discussed in PSY, it is also

important to allow for both cases with a I(0) or I(1) noise when estimating the nonlinear

trend components. Again, we use the sequential procedure based on theMean-W (`+1) test

with a maximal value n = 5 and a 5% size to determine the frequencies. For all three series,

we include a linear trend term in the regression based on the procedure of PSY described

above. The results are presented in Table 3(b) and the �tted trend functions are shown in

Figure 6. For the global and southern hemisphere temperature series, K2 = (k1; k2) = (1; 3)
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is selected. For the northern hemisphere, K1 = k1 = 1 is selected. Our results suggest that,

even with a small number of frequencies, the trigonometric trend model captures well the

main features of the climate trend, namely the slowdown in growth during the 40s-mid-50s,

the change in growth following 1960 and a slowdown in growth in the post mid-90s. A

decrease is also present in the late 19th century for global and southern hemisphere.

5 Conclusions

We proposed a new consistent model selection procedure for a trigonometric trend function.

The problem of unknown frequencies in such a cyclical trend was �rst investigated by An-

derson (1971) under the assumption of serially uncorrelated errors. We extended the result

in important ways by allowing for general linear processes approximated by a sequence of

autoregressions without the prior knowledge as to whether the error term is stationary or

contains an autoregressive unit root. This was achieved by modifying the test statistic pro-

posed by Perron, Shintani and Yabu (2017) which requires the assumption of a known set

of frequencies. We showed that the limiting distribution of our test statistics is the same

for both the stationary and unit root cases even if the frequencies are unknown. Simula-

tion results con�rmed that our procedure works well with sample sizes typically available in

practice. We illustrated the usefulness of our method via applications to international data

on unemployment rates and to global temperature series.
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Appendix (a): Proofs of the Theoretical Results

Proof of Theorem 1: Without loss of generality, we only consider model (1) with a

maximum of two frequencies, setting �0 = 0 and using only the sine components, i.e.,

yt = 
1T sin(2�k1t=T ) + 
2T sin(2�k2t=T ) + ut (A.1)

We show that, when the regression model has only one frequency, the estimated frequency

k̂ = argmin� SSRT (K1) for � = f1; :::; ng converges to either k1 or k2 under the conditions

of Theorem 1. Without loss of generality, we let j
10j > j
20j if j�j < 1 and j
10k1j > j
20k2j

if � = 1. We show that if j�j < 1, T�1[SSRT (k)� SSRT (k1)] converges to a positive value

for any k 6= k1 and likewise for T 1�2h[SSRT (k) � SSRT (k1)] when � = 1. Therefore, the

selected frequency is a consistent estimate of the frequency k1, arbitrarily selected as the one

which minimizes the overall SSR. This result can easily be generalized by adding the cosine

functions and allowing the number of frequencies to be m. Note that if a one frequency

model holds, i.e., (A.1) with 
20 = 0, the model is correctly speci�ed. Theorem 1(b) implies

that if the true number of frequencies is one, the selected frequency obtained by minimizing

the SSR is consistent. This is a special case of Theorem 1(a), hence we only prove part (b).

Stationary Case (j�j < 1): The OLS estimate of � converges to a weighted average of �

and 1, i.e., �̂
p! ��i � ��i + (1� �i), where �1 = !2=(!2 + 
220=2) with !2 = �2=(1� �2) if

k = k1; �2 = !2=(!2+ 
210=2) if k = k2; �3 = !
2=(!2+(
210+ 


2
20)=2) if k =2 fk1; k2g. In large

samples, � < �̂ < 1 and thus �̂S = �̂. Also,

T�1SSRT (k)
p!

8>>><>>>:
SSR(k1) = �

2 + (�� ��1)2!2 + (1� ��1)2
220=2, if k = k1
SSR(k2) = �

2 + (�� ��2)2!2 + (1� ��2)2
210=2, if k = k2
SSR(k) = �2 + (�� ��3)2!2 + (1� ��3)2(
210 + 
220)=2, if k =2 fk1; k2g

and, hence, SSR(k) has a unique minimum at k1. For the case k = k1,

�̂ =
PT

t=2 ûtût�1=
PT

t=2 û
2
t�1

A-1



=
T�1

PT
t=2(
20 sin(2�k2t=T ) + ut)(
20 sin(2�k2(t� 1)=T ) + ut�1)

T�1
PT

t=2(
20 sin(2�k2(t� 1)=T ) + ut�1)2
+ op(1)

=
T�1

PT
t=2 utut�1 + 


2
20T

�1PT
t=2 sin(2�k2t=T ) sin(2�k2(t� 1)=T )

T�1
PT

t=2 u
2
t�1 + 


2
20T

�1PT
t=2 sin

2(2�k2(t� 1)=T )
+ op(1)

p! [(�!2 + 
220=2)=(!
2 + 
220=2)] = ��1 + (1� �1)

using the results of T�1
PT

t=2 sin
2(2�k2t=T )! 1=2 and T�1

PT
t=2 u

2
t�1

p! !2. Also,

T�1SSRT (k1)

= T�1
PT

t=2(
20(sin(2�k2t=T )� ��1 sin(2�k2(t� 1)=T )) + (�� ��1)ut�1 + et)2 + op(1)

= T�1
PT

t=2 e
2
t + (�� ��1)2T�1

PT
t=2 u

2
t�1

+
220T
�1PT

t=2(sin(2�k2t=T )� ��1 sin(2�k2(t� 1)=T ))2 + op(1)

p! SSR(k1) = �
2 + (�� ��1)2!2 + (1� ��1)2
220=2

using T�1
PT

t=2 et
2 p! �2 and T�1

PT
t=2(sin(2�k2t=T )���1 sin(2�k2(t�1)=T ))2 ! (1���1)2=2.

We can similarly derive the convergence results of �̂ and T�1SSRT (k) for the case of k = k2

and k =2 fk1; k2g. Next, we show that SSR(k) has a unique minimum at k = k1. We have,

SSR(k2)� SSR(k1) = [(�� ��2)2!2 + (1� ��2)2
210=2]� [(�� ��1)2!2 + (1� ��1)2
220=2]

= (1� �)2
�
[(1� �2)2!2 + �22
210=2]� [(1� �1)2!2 + �21
220=2]

	
= (1� �)2!2

�
(
210=2)=(!

2 + 
210=2)� (
220=2)=(!2 + 
220=2)
	

= [(1� �)2!4(
210 � 
220))=(2(!2 + 
210=2)(!2 + 
220=2)] > 0

using �� ��i = (1� �i)(�� 1) and 1� ��i = �i(1� �). Similarly, for k =2 fk1; k2g,

SSR(k)� SSR(k1) = [(�� ��3)2!2 + (1� ��3)2(
210 + 
220)=2]� [(�� ��1)2!2 + (1� ��1)2
220=2]

= (1� �)2
�
[(1� �3)2!2 + �23(
210 + 
220)=2]� [(1� �1)2!2 + �21
220=2]
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= (1� �)2!2
�

(
210 + 

2
20)=2

!2 + (
210 + 

2
20)=2

� 
220=2

!2 + 
220=2

�
= [(1� �)2!4
210=(2(!2 + (
210 + 
220)=2)(!2 + 
220=2)] > 0:

Therefore, SSR(k) has an unique minimum at k1. Unit Root Case (� = 1): Denote the

OLS estimate of 
 by 
̂OLS. When k = k1,

T (�̂� 1) = T�2h
PT

t=2(�(
̂OLS � 
1T )� sin(2�k1t=T ) + 
2T�sin(2�k2t=T ) + et)but�1
T�2h�1

PT
t=2 bu2t�1

and thus T (�̂ � 1) p! 0 since T�2h�1
PT

t=2 û
2
t�1 = Op(1) and all the terms in the numerator

are op(1). T (�̂� 1)
p! 0 leads to T (�̂S � 1)

p! 0. Similarly, we can show T (�̂� 1) p! 0 and

thus T (�̂S � 1)
p! 0 for the case with k = k2 and k =2 fk1; k2g. For SSRT (k), we have

T 1�2h[SSRT (k2)� SSRT (k1)]

= 
210T
PT

t=2�sin
2(2�k1t=T )� 
220T

PT
t=2�sin

2(2�k2t=T ) + op(1)

p! 2�2(k21

2
10 � k22
220) > 0;

and

T 1�2h[SSRT (k)� SSRT (k1)] = 
210T
TX
t=2

�sin2(2�k1t=T ) + op(1)

p! 2�2(k21

2
10) > 0, if k =2 fk1; k2g:

Therefore, the estimated frequency is consistent for k1.

Proof of Theorem 2: Without loss of generality, we consider the single frequency model

yt = �0 + 
11 sin (2�kt=T ) + 
21 cos (2�kt=T ) + ut (A.2)

Generalizing the result to a multiple frequency model is straightforward. If � = 1;

W
̂(k) ) [R(
R 1
0
G1k(r)G

0

1kdr)
�1R 1

0
G1k(r)dW (r)]

0[R(
R 1
0
G1k(r)G1k(r)

0
dr)�1R0]�1

�[R(
R 1
0
G1k(r)G1k(r)

0
dr)�1

R 1
0
G1k(r)dW (r)] =

d �2(2):
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Substituting G1k(r) = [0; 2�k cos(2�kr);�2�k sin(2�kr)]0 yieldsZ 1

0

G1k(r)G1k(r)
0
dr

=

26664
0 0 0

0 (2�k)22
R 1
0
cos(2�kr)2dr �2�k

R 1
0
sin(2�kr) cos(2�kr)dr

0 �2�k
R 1
0
sin(2�kr) cos(2�kr)dr (2�k)2

R 1
0
sin(2�kr)2dr

37775

= (2�k)2

26664
0 0 0

0
R 1
0
cos(2�kr)2dr 0

0 0
R 1
0
sin(2�kr)2dr

37775
and Z 1

0

G1k(r)dW (r) = 2�k
�
0
R 1
0
cos(2�kr)dW (r) �

R 1
0
sin(2�kr)dW (r)

�0
:

Therefore,

W
̂(k) =) g(k) =

hR 1
0
sin(2�kr)dW (r)

i2
R 1
0
sin(2�kr)2dr

+

hR 1
0
cos(2�kr)dW (r)

i2
R 1
0
cos(2�kr)2dr

:

Note that
R 1
0
sin(2�kr)dW (r)=[

R 1
0
sin(2�kr)2dr]1=2 and

R 1
0
cos(2�kr)dW (r)=[

R 1
0
cos(2�kr)2dr]1=2

are independent standard normal random variables. Therefore, the limiting distributions of

sup-W and Mean-W are those of the supremum of a chi-square random variable with 2

degrees of freedom, respectively. On the other hand, if j�j < 1

W
̂(k) ) [R(
R 1
0
G0k(r)G0k(r)

0
dr)�1

R 1
0
G0k(r)dW (r)]

0[R(
R 1
0
G0k(r)G0k(r)

0
dr)�1R0]�1

�[R(
R 1
0
G0k(r)G0k(r)

0
dr)�1

R 1
0
G0k(r)dW (r)] =

d �2(2):

Substituting G0k(r) = [1; sin(2�kr); cos(2�kr)]0 yieldsZ 1

0

G0k(r)G0k(r)
0
dr

=

26664
1

R 1
0
sin(2�kr)dr

R 1
0
cos(2�kr)drR 1

0
sin(2�kr)dr

R 1
0
sin(2�kr)2dr

R 1
0
sin(2�kr) cos(2�kr)drR 1

0
cos(2�kr)dr

R 1
0
sin(2�kr) cos(2�kr)dr

R 1
0
cos(2�kr)2dr

37775
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=

26664
1 0 0

0
R 1
0
sin(2�kr)2dr 0

0 0
R 1
0
cos(2�kr)2dr

37775
and Z 1

0

G0k(r)dW (r) = ( 1
R 1
0
sin(2�kr)dW (r)

R 1
0
cos(2�kr)dW (r) )

0:

Therefore, W
̂(k)) g(k). This is the same functional form for the distribution as the one in

the I(1) case. This result implies sup-W and Mean-W have the same limiting distribution.

Appendix (b): Roy and Fuller�s (2001) bias corrected estimator

It is well known that the OLS estimate of � is biased downward especially when � is

near one. Hence, in many cases no truncation may apply when some would be desirable.

We adopt the bias correction proposed by Roy and Fuller (2001). We consider here the one

based on the OLS estimate (Roy et al., 2004). It is a function of a unit root test, namely

the t-ratio �̂ = (�̂� 1)=�̂�, where �̂ is the OLS estimate and �̂� its standard deviation. The

bias-corrected estimate is given by

�̂M = �̂+ C(�̂)�̂�; (A.3)

C(�̂) =

8>>>>>><>>>>>>:

��̂ if �̂ > � pct

IpT
�1�̂ � (1 + r)[�̂ + c2(�̂ + a)]�1 if �a < �̂ � � pct
IpT

�1�̂ � (1 + r)�̂�1 if �c1=21 < �̂ � �a

0 if �̂ � �c1=21

where c1 = (1 + r)T with r the number of parameters estimated in the trend function;

r = 1+2m for the constant only case and r = 2+2m when a constant and trend are included,

with m the number of frequencies included. Also, c2 = [(1 + r)T � � 2pct(Ip + T )][� pct(a +

� pct)(Ip+T )]
�1, a is some constant and � pct is a percentile of the limit distribution of �̂ when
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� = 1. Also, Ip = [(p + 1)=2] where p is the order of the autoregressive process considered

for the noise component. The parameters for which speci�c values need to be selected are

� pct and a. Based on extensive simulation experiments, we selected a = 10 since it leads

to tests with better properties, and for � pct we use � 0:85, the upper biased version whose

values are presented in Table A-1. Hence, our suggested procedure involves the following

steps: 1) Detrend the data by OLS to obtain residuals, say ût; 2) Estimate an AR(p) for ût

yielding the estimate �̂ and the t-ratio �̂ ; 3) Use �̂ and �̂ to get the Roy and Fuller (2001)

biased corrected estimates �̂M ; 4) Apply the truncation �̂MS = �̂M if j�̂M � 1j > T�1=2

and 1 otherwise; 5) Apply the GLS procedure of Prais and Winsten (1954) with �̂MS to

obtain the estimates of the coe¢ cients of the trend and the estimate of the variance of the

residuals and construct the standard Wald-statistic Wb
(k); 6) Construct the sup-W (` + 1)
or Mean-W (`+ 1) tests as described in the text.

Using the biased corrected versions �̂M , instead of the OLS estimates, does not change

anything to the stated large sample results (Theorems 1 and 2). All that is needed for these

asymptotic results to hold is that T (�̂M � 1) = Op(1) when � = 1, and T 1=2(�̂M � �)
d!

N(0; 1 � �2) when j�j < 1. These conditions are satis�ed. Roy et al. (2004) and Perron

and Yabu (2009a) use a similar bias correction based on a weighted symmetric least-squares

estimator of � instead of the OLS estimator. Both lead to tests with similar properties.

However, note that the test proposed by Roy et al. (2004) has very di¤erent sizes in the I(0)

and I(1) cases; see Perron and Yabu (2012) for details.
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Table 1: Critical values of the sup-W and Mean-W tests with a constant 

 
Note: The critical values can also be applied to the case with trending series; see the 

Supplement. They are the same in the I(1) case and nearly so in the I(0) case.  

 

Table 2: Proportion of correct frequency selection with a constant, 𝑻 ൌ 𝟐𝟎𝟎 

(a) 𝛂 ൌ 𝟏 

 

(b) 𝛂 ൌ 𝟎. 𝟖 

 

 

  

1
sup-W Mean-W sup-W Mean-W sup-W Mean-W sup-W Mean-W

0.90 4.61 5.94 3.89 6.73 3.54 7.32 3.35 7.75 3.20
0.95 5.99 7.35 4.75 8.14 4.19 8.74 3.88 9.18 3.66
0.99 9.21 10.59 6.64 11.41 5.60 12.00 5.02 12.45 4.65

2 3 4 5
𝑛 െ ℓ

𝜒ଶሺ2ሻ

1 2 3 4 5 Average 1 2 3 4 5 Average 1 2 3 4 5 Average
0 0.79 0.15 0.04 0.01 0.00 0.20 0.47 0.20 0.14 0.11 0.10 0.20 0.22 0.20 0.21 0.19 0.19 0.20
1 0.80 0.20 0.08 0.04 0.03 0.23 0.49 0.28 0.30 0.38 0.49 0.39 0.24 0.30 0.41 0.54 0.66 0.43
2 0.83 0.31 0.21 0.17 0.16 0.34 0.55 0.50 0.69 0.85 0.93 0.71 0.31 0.53 0.79 0.93 0.99 0.71
3 0.86 0.46 0.39 0.38 0.37 0.49 0.64 0.75 0.93 0.96 0.95 0.85 0.42 0.79 0.97 1.00 1.00 0.84
4 0.90 0.60 0.58 0.57 0.57 0.64 0.73 0.91 0.98 0.95 0.94 0.90 0.54 0.93 1.00 1.00 1.00 0.90
5 0.93 0.73 0.72 0.72 0.72 0.77 0.82 0.98 0.97 0.94 0.95 0.93 0.68 0.99 1.00 1.00 1.00 0.93

FGLSOLS DF
𝛾 ∖ 𝑘ଵൌ

1 2 3 4 5 Average 1 2 3 4 5 Average 1 2 3 4 5 Average
0.00 0.25 0.23 0.20 0.17 0.13 0.20 0.21 0.21 0.20 0.19 0.18 0.20 0.19 0.21 0.21 0.20 0.19 0.20
0.25 0.33 0.31 0.28 0.25 0.22 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.26 0.28 0.29 0.29 0.29 0.28
0.50 0.52 0.49 0.48 0.45 0.43 0.47 0.46 0.45 0.47 0.48 0.50 0.47 0.43 0.47 0.49 0.50 0.53 0.48
0.75 0.72 0.72 0.72 0.70 0.70 0.71 0.65 0.67 0.70 0.73 0.76 0.70 0.63 0.69 0.72 0.75 0.79 0.72
1.00 0.89 0.88 0.88 0.88 0.89 0.88 0.83 0.84 0.87 0.90 0.92 0.87 0.82 0.86 0.89 0.91 0.93 0.88
1.25 0.97 0.96 0.97 0.97 0.97 0.97 0.93 0.94 0.96 0.98 0.99 0.96 0.92 0.95 0.97 0.98 0.99 0.96

OLS DF FGLS
𝛾 ∖ 𝑘ଵ ൌ



Table 3: Empirical applications to unemployment rates and temperature series 

 
  

Sample period Model
(a) Unemployment rate series

Canada 1983.1-2015.7 Constant (2,4,5)
France 1983.1-2015.7 Constant (1,3,5)
Germany 1991.1-2015.7 Constant (1,2,3,4)
Italy 1983.1-2015.7 Trend (1,2)
Japan 1983.1-2015.7 Constant (1,4)
United Kingdom 1983.1-2015.7 Trend (2,4,5)
United States 1983.1-2015.7 Constant (1,2,3,4,5)

(b) Temperature series
Global 1856-2010 Trend (1,3)
Northern 1856-2010 Trend (1)
Southern 1850-2010 Trend (1,3)

Selected frequencies
using the Mean-W test



Figure 1: Finite sample size 

(a) 𝑻 ൌ 𝟐𝟎𝟎                              (b) 𝑻 ൌ 𝟓𝟎𝟎 

 

 

Figure 2: Finite sample power (𝒌𝟏 ൌ 𝟐, 𝑻 ൌ 𝟓𝟎𝟎) 

(a) 𝜶 ൌ 𝟏                                 (b) 𝜶 ൌ 𝟎. 𝟖 
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Figure 3: Probability of 𝒌𝟏 ൌ 𝟐 being selected (𝑻 ൌ 𝟓𝟎𝟎) 

(a)  𝜶 ൌ 𝟏                                (b) 𝜶 ൌ 𝟎. 𝟖 

 

 

Figure 4: Probability of 𝒌𝟏 ൌ 𝟐 and 𝒌𝟐 ൌ 𝟑 being selected (𝑻 ൌ 𝟓𝟎𝟎) 

(a)  𝜶 ൌ 𝟏                                (b) 𝜶 ൌ 𝟎. 𝟖 
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Figure 5: Monthly unemployment rate and fitted trigonometric trend for the G7 countries 

(a) Canada                               (b) France 

 

(c) Germany                               (d) Italy 

 

(e) Japan                                  (f) United Kingdom 

 

(g) United States 
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Figure 6: Temperature series and fitted trigonometric trend 

(a)  Global 

 
(b)  North Hemisphere 

 

(c)  South Hemisphere 
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Table A-1: Values of 𝝉𝟎.𝟖𝟓 

1) With a constant only   2) With a constant and time trend 

 

a) Two frequencies a) Two frequencies
2 3 4 5 2 3 4 5

1 -3.93 -3.63 -3.47 -3.39 1 -4.51 -4.30 -4.15 -4.04
2 -2.89 -2.78 -2.74 2 -3.90 -3.72 -3.64
3 -2.58 -2.55 3 -3.44 -3.36
4 -2.49 4 -3.22

b) Three frequencies b) Three frequencies
3 4 5 3 4 5

1 2 -4.47 -4.28 -4.15 1 2 -5.11 -4.95 -4.84
1 3 -3.91 -3.79 1 3 -4.71 -4.59
1 4 -3.61 1 4 -4.40
2 3 -3.07 -3.02 2 3 -4.28 -4.15
2 4 -2.90 2 4 -3.94
3 4 -2.67 3 4 -3.60

c) Four frequencies c) Four frequencies
3,4 3,5 4,5 3,4 3,5 4,5

1 2 -5.00 -4.84 -4.60 1 2 -5.63 -5.52 -5.34
1 3 -4.16 1 3 -5.09
2 3 -3.20 2 3 -4.61

 d) Five frequencies  d) Five frequencies

-5.48 -6.10

ሺ𝑘ଵ, 𝑘ଶሻ
𝑘ଵ ∖ 𝑘ଶ

𝑘ଵ 𝑘ଶ ∖ 𝑘ଷ

ሺ𝑘ଵ, 𝑘ଶ, 𝑘ଷሻ

𝑘ଵ 𝑘ଶ ∖ 𝑘ଷ, 𝑘ସ

ሺ𝑘ଵ, 𝑘ଶ, 𝑘ଷ, 𝑘ସሻ

𝑘ଵ, 𝑘ଶ, 𝑘ଷ, 𝑘ସ, 𝑘ହ ൌ 1,2,3,4,5

𝑘ଵ ∖ 𝑘ଶ

ሺ𝑘ଵ, 𝑘ଶ, 𝑘ଷ, 𝑘ସሻ

𝑘ଵ, 𝑘ଶ, 𝑘ଷ, 𝑘ସ, 𝑘ହ ൌ 1,2,3,4,5

𝑘ଵ 𝑘ଶ ∖ 𝑘ଷ

ሺ𝑘ଵ, 𝑘ଶ, 𝑘ଷሻ

ሺ𝑘ଵ, 𝑘ଶሻ

𝑘ଵ 𝑘ଶ ∖ 𝑘ଷ, 𝑘ସ


